Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.01474
Cited By
v1
v2
v3 (latest)
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"
50 / 3,224 papers shown
Title
Generalized Learning with Rejection for Classification and Regression Problems
Amina Asif
F. Minhas
20
3
0
03 Nov 2019
Quantifying (Hyper) Parameter Leakage in Machine Learning
Vasisht Duddu
D. V. Rao
AAML
MIACV
FedML
67
5
0
31 Oct 2019
Multivariate Uncertainty in Deep Learning
Rebecca L. Russell
Christopher P. Reale
BDL
UQCV
69
70
0
31 Oct 2019
Heteroscedastic Calibration of Uncertainty Estimators in Deep Learning
Bindya Venkatesh
Jayaraman J. Thiagarajan
UQCV
45
6
0
30 Oct 2019
Learn-By-Calibrating: Using Calibration as a Training Objective
Jayaraman J. Thiagarajan
Bindya Venkatesh
Deepta Rajan
UQCV
53
6
0
30 Oct 2019
Generative Well-intentioned Networks
J. Cosentino
Jun Zhu
AI4CE
37
2
0
28 Oct 2019
Towards calibrated and scalable uncertainty representations for neural networks
Nabeel Seedat
Christopher Kanan
UQCV
77
19
0
28 Oct 2019
Thieves on Sesame Street! Model Extraction of BERT-based APIs
Kalpesh Krishna
Gaurav Singh Tomar
Ankur P. Parikh
Nicolas Papernot
Mohit Iyyer
MIACV
MLAU
142
201
0
27 Oct 2019
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
122
211
0
27 Oct 2019
Modelling heterogeneous distributions with an Uncountable Mixture of Asymmetric Laplacians
Axel Brando
Jose A. Rodríguez-Serrano
Jordi Vitrià
Alberto Rubio
60
22
0
27 Oct 2019
Federated Uncertainty-Aware Learning for Distributed Hospital EHR Data
Sabri Boughorbel
Fethi Jarray
Neethu Venugopal
S. Moosa
Haithum Elhadi
Michel Makhlouf
OOD
FedML
131
53
0
27 Oct 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
Willie Neiswanger
Yash Savani
BDL
126
329
0
25 Oct 2019
Accurate Layerwise Interpretable Competence Estimation
Vickram Rajendran
Will LeVine
82
10
0
24 Oct 2019
We Know Where We Don't Know: 3D Bayesian CNNs for Credible Geometric Uncertainty
T. LaBonte
Carianne Martinez
S. Roberts
UQCV
3DV
53
31
0
23 Oct 2019
Stabilising priors for robust Bayesian deep learning
Felix Mcgregor
Arnu Pretorius
J. D. Preez
Steve Kroon
BDL
UQCV
28
3
0
23 Oct 2019
Deep Learning at the Edge
Sahar Voghoei
N. Tonekaboni
Jason G. Wallace
H. Arabnia
175
41
0
22 Oct 2019
Robust Training with Ensemble Consensus
Jisoo Lee
Sae-Young Chung
NoLa
81
28
0
22 Oct 2019
Detecting Underspecification with Local Ensembles
David Madras
James Atwood
Alexander DÁmour
64
4
0
21 Oct 2019
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
268
1,440
0
21 Oct 2019
Unsupervised Out-of-Distribution Detection with Batch Normalization
Jiaming Song
Yang Song
Stefano Ermon
OODD
69
22
0
21 Oct 2019
Toward Metrics for Differentiating Out-of-Distribution Sets
Mahdieh Abbasi
Changjian Shui
Arezoo Rajabi
Christian Gagné
R. Bobba
OODD
30
4
0
18 Oct 2019
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image Classification
Matias Valdenegro-Toro
UQCV
113
52
0
17 Oct 2019
Consistency-based Semi-supervised Active Learning: Towards Minimizing Labeling Cost
M. Gao
Zizhao Zhang
Guo-Ding Yu
Sercan O. Arik
L. Davis
Tomas Pfister
236
200
0
16 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
44
8
0
13 Oct 2019
Information Aware Max-Norm Dirichlet Networks for Predictive Uncertainty Estimation
Theodoros Tsiligkaridis
UQCV
BDL
46
8
0
10 Oct 2019
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
Tony Duan
Anand Avati
D. Ding
Khanh K. Thai
S. Basu
A. Ng
Alejandro Schuler
BDL
67
306
0
08 Oct 2019
Evaluating Scalable Uncertainty Estimation Methods for DNN-Based Molecular Property Prediction
Gabriele Scalia
Colin A. Grambow
Barbara Pernici
Yi‐Pei Li
W. Green
BDL
89
8
0
07 Oct 2019
Open Set Medical Diagnosis
Viraj Prabhu
A. Kannan
Geoffrey Tso
Namit Katariya
Manish Chablani
David Sontag
X. Amatriain
49
9
0
07 Oct 2019
Deep Evidential Regression
Alexander Amini
Wilko Schwarting
A. Soleimany
Daniela Rus
EDL
PER
BDL
UD
UQCV
120
444
0
07 Oct 2019
Requirements for Developing Robust Neural Networks
Rulin Shao
Michael Lee
VLM
34
1
0
04 Oct 2019
Revisiting Classical Bagging with Modern Transfer Learning for On-the-fly Disaster Damage Detector
Jiaxing Huang
Seungwon Lee
Jingyi Zhang
Taegyun Jeon
49
6
0
04 Oct 2019
Predicting materials properties without crystal structure: Deep representation learning from stoichiometry
Rhys E. A. Goodall
A. Lee
81
262
0
01 Oct 2019
Addressing Failure Prediction by Learning Model Confidence
Charles Corbière
Nicolas Thome
Avner Bar-Hen
Matthieu Cord
P. Pérez
124
292
0
01 Oct 2019
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
62
32
0
28 Sep 2019
Energy-Based Models for Deep Probabilistic Regression
Fredrik K. Gustafsson
Martin Danelljan
Goutam Bhat
Thomas B. Schon
UQCV
BDL
74
4
0
26 Sep 2019
Towards neural networks that provably know when they don't know
Alexander Meinke
Matthias Hein
OODD
81
141
0
26 Sep 2019
Regularising Deep Networks with Deep Generative Models
M. Willetts
A. Camuto
Stephen J. Roberts
Chris Holmes
UQCV
22
0
0
25 Sep 2019
Input complexity and out-of-distribution detection with likelihood-based generative models
Joan Serrà
David Álvarez
Vicencc Gómez
Olga Slizovskaia
José F. Núñez
Jordi Luque
OODD
166
277
0
25 Sep 2019
Residual Reactive Navigation: Combining Classical and Learned Navigation Strategies For Deployment in Unknown Environments
Krishan Rana
Ben Talbot
Vibhavari Dasagi
Michael Milford
Niko Sünderhauf
90
22
0
24 Sep 2019
Sampling Bias in Deep Active Classification: An Empirical Study
Ameya Prabhu
Charles Dognin
M. Singh
78
64
0
20 Sep 2019
Evaluating and Boosting Uncertainty Quantification in Classification
Xiaoyang Huang
Jiancheng Yang
Linguo Li
Haoran Deng
Bingbing Ni
Yi Tian Xu
40
9
0
13 Sep 2019
Probabilistic framework for solving Visual Dialog
Badri N. Patro
Anupriy
Vinay P. Namboodiri
BDL
141
13
0
11 Sep 2019
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
Jayaraman J. Thiagarajan
Bindya Venkatesh
P. Sattigeri
P. Bremer
UQCV
63
31
0
09 Sep 2019
High Accuracy and High Fidelity Extraction of Neural Networks
Matthew Jagielski
Nicholas Carlini
David Berthelot
Alexey Kurakin
Nicolas Papernot
MLAU
MIACV
99
382
0
03 Sep 2019
Urban flows prediction from spatial-temporal data using machine learning: A survey
Peng Xie
Tianrui Li
Jia Liu
Shengdong Du
Xin Yang
Junbo Zhang
AI4TS
AI4CE
72
74
0
26 Aug 2019
Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels
Felix J. S. Bragman
Ryutaro Tanno
Sebastien Ourselin
Daniel C. Alexander
M. Jorge Cardoso
73
87
0
26 Aug 2019
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
86
14
0
26 Aug 2019
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural Networks
Juan Maroñas
Roberto Paredes Palacios
D. Ramos-Castro
UQCV
BDL
102
24
0
23 Aug 2019
Adversarial-Based Knowledge Distillation for Multi-Model Ensemble and Noisy Data Refinement
Zhiqiang Shen
Zhankui He
Wanyun Cui
Jiahui Yu
Yutong Zheng
Chenchen Zhu
Marios Savvides
AAML
36
5
0
22 Aug 2019
n-MeRCI: A new Metric to Evaluate the Correlation Between Predictive Uncertainty and True Error
Michel Moukari
Loïc Simon
Sylvaine Picard
F. Jurie
UQCV
57
4
0
20 Aug 2019
Previous
1
2
3
...
59
60
61
...
63
64
65
Next