ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Revisiting One-vs-All Classifiers for Predictive Uncertainty and
  Out-of-Distribution Detection in Neural Networks
Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks
Shreyas Padhy
Zachary Nado
Jie Jessie Ren
J. Liu
Jasper Snoek
Balaji Lakshminarayanan
UQCV
88
47
0
10 Jul 2020
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
  Reinforcement Learning
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning
Kimin Lee
Michael Laskin
A. Srinivas
Pieter Abbeel
OffRL
110
204
0
09 Jul 2020
Uncertainty Quantification in Deep Residual Neural Networks
Uncertainty Quantification in Deep Residual Neural Networks
Lukasz Wandzik
R. Vicente-Garcia
J. Krüger
UQCV
36
1
0
09 Jul 2020
Quantifying and Leveraging Predictive Uncertainty for Medical Image
  Assessment
Quantifying and Leveraging Predictive Uncertainty for Medical Image Assessment
Florin-Cristian Ghesu
Bogdan Georgescu
Awais Mansoor
Y. Yoo
Eli Gibson
...
Ramandeep Singh
S. Digumarthy
Mannudeep K. Kalra
Sasa Grbic
Dorin Comaniciu
UQCVEDL
63
55
0
08 Jul 2020
Diverse Ensembles Improve Calibration
Diverse Ensembles Improve Calibration
Asa Cooper Stickland
Iain Murray
UQCVFedML
78
28
0
08 Jul 2020
Deep Ensemble Analysis for Imaging X-ray Polarimetry
Deep Ensemble Analysis for Imaging X-ray Polarimetry
A. L. Peirson
R. Romani
H. Marshall
J. Steiner
L. Baldini
23
19
0
08 Jul 2020
Single Shot MC Dropout Approximation
Single Shot MC Dropout Approximation
K. Brach
Beate Sick
Oliver Durr
UQCVBDL
76
21
0
07 Jul 2020
Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis
  of Intermediate-Severity Faults?
Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis of Intermediate-Severity Faults?
Baihong Jin
Yingshui Tan
Yuxin Chen
K. Poolla
Alberto L. Sangiovanni-Vincentelli
AI4CE
45
2
0
07 Jul 2020
Uncertainty-Aware Lookahead Factor Models for Quantitative Investing
Uncertainty-Aware Lookahead Factor Models for Quantitative Investing
Lakshay Chauhan
J. Alberg
Zachary Chase Lipton
AI4TSAIFin
50
13
0
07 Jul 2020
Efficient Conformal Prediction via Cascaded Inference with Expanded
  Admission
Efficient Conformal Prediction via Cascaded Inference with Expanded Admission
Adam Fisch
Tal Schuster
Tommi Jaakkola
Regina Barzilay
50
1
0
06 Jul 2020
Selective Dyna-style Planning Under Limited Model Capacity
Selective Dyna-style Planning Under Limited Model Capacity
Zaheer Abbas
Samuel Sokota
Erin J. Talvitie
Martha White
89
34
0
05 Jul 2020
Evaluating Uncertainty Estimation Methods on 3D Semantic Segmentation of
  Point Clouds
Evaluating Uncertainty Estimation Methods on 3D Semantic Segmentation of Point Clouds
Swaroop Bhandary
Nico Hochgeschwender
Paul Pl¨oger
Frank Kirchner
Matias Valdenegro-Toro
UQCV3DPC
43
5
0
03 Jul 2020
Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions
  in Medical Domain
Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions in Medical Domain
Takahiro Mimori
Keiko Sasada
H. Matsui
Issei Sato
UQCV
82
7
0
03 Jul 2020
Confidence-Aware Learning for Deep Neural Networks
Confidence-Aware Learning for Deep Neural Networks
J. Moon
Jihyo Kim
Younghak Shin
Sangheum Hwang
UQCV
111
150
0
03 Jul 2020
Uncertainty Prediction for Deep Sequential Regression Using Meta Models
Uncertainty Prediction for Deep Sequential Regression Using Meta Models
Jirí Navrátil
Matthew Arnold
Benjamin Elder
BDLUQCV
34
6
0
02 Jul 2020
Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain
  Segmentation from Stacks of MRI Slices
Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices
Guotai Wang
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
Shaoting Zhang
87
35
0
02 Jul 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
195
645
0
01 Jul 2020
Classification Confidence Estimation with Test-Time Data-Augmentation
Classification Confidence Estimation with Test-Time Data-Augmentation
Yuval Bahat
Gregory Shakhnarovich
57
18
0
30 Jun 2020
Improving Calibration through the Relationship with Adversarial
  Robustness
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
86
25
0
29 Jun 2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
  Higher-Order Influence Functions
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa
M. Schaar
UDUQCVBDLTDI
92
53
0
29 Jun 2020
Localization Uncertainty Estimation for Anchor-Free Object Detection
Localization Uncertainty Estimation for Anchor-Free Object Detection
Youngwan Lee
Joong-won Hwang
Hyungil Kim
Kimin Yun
Yongjin Kwon
Yuseok Bae
Joungyoul Park
94
32
0
28 Jun 2020
A Confidence-Calibrated MOBA Game Winner Predictor
A Confidence-Calibrated MOBA Game Winner Predictor
Dong-Hee Kim
Changwoo Lee
Ki-Seok Chung
21
12
0
28 Jun 2020
ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining
ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining
Jiefeng Chen
Yixuan Li
Xi Wu
Yingyu Liang
S. Jha
OODD
102
140
0
26 Jun 2020
A Comparison of Uncertainty Estimation Approaches in Deep Learning
  Components for Autonomous Vehicle Applications
A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications
F. Arnez
H. Espinoza
A. Radermacher
Franccois Terrier
UQCV
71
30
0
26 Jun 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCVBDLOOD
86
39
0
26 Jun 2020
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
83
188
0
26 Jun 2020
Fast, Accurate, and Simple Models for Tabular Data via Augmented
  Distillation
Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation
Rasool Fakoor
Jonas W. Mueller
Nick Erickson
Pratik Chaudhari
Alex Smola
82
54
0
25 Jun 2020
AutoCP: Automated Pipelines for Accurate Prediction Intervals
AutoCP: Automated Pipelines for Accurate Prediction Intervals
Yao Zhang
W. Zame
M. Schaar
53
0
0
24 Jun 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
110
212
0
24 Jun 2020
Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
Elias Kassapis
G. Dikov
D. K. Gupta
C. Nugteren
92
17
0
23 Jun 2020
Multi-Class Uncertainty Calibration via Mutual Information
  Maximization-based Binning
Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning
Kanil Patel
William H. Beluch
Binh Yang
Michael Pfeiffer
Dan Zhang
UQCV
113
34
0
23 Jun 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
98
63
0
22 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDLUQCV
90
4
0
21 Jun 2020
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
  Influence Functions
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions
Ahmed Alaa
M. Schaar
UQCVBDL
83
23
0
20 Jun 2020
From Predictions to Decisions: Using Lookahead Regularization
From Predictions to Decisions: Using Lookahead Regularization
Nir Rosenfeld
Sophie Hilgard
S. Ravindranath
David C. Parkes
58
21
0
20 Jun 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information
  Form
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDLUQCV
103
47
0
20 Jun 2020
Regression Prior Networks
Regression Prior Networks
A. Malinin
Sergey Chervontsev
Ivan Provilkov
Mark Gales
BDLUQCV
82
38
0
20 Jun 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDLUQCV
121
18
0
20 Jun 2020
Evaluating Prediction-Time Batch Normalization for Robustness under
  Covariate Shift
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift
Zachary Nado
Shreyas Padhy
D. Sculley
Alexander DÁmour
Balaji Lakshminarayanan
Jasper Snoek
OODAI4TS
123
251
0
19 Jun 2020
MARS: Masked Automatic Ranks Selection in Tensor Decompositions
MARS: Masked Automatic Ranks Selection in Tensor Decompositions
M. Kodryan
D. Kropotov
Dmitry Vetrov
64
9
0
18 Jun 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
120
83
0
18 Jun 2020
Uncertainty in Gradient Boosting via Ensembles
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
91
97
0
18 Jun 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
100
60
0
18 Jun 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
75
49
0
18 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
290
452
0
17 Jun 2020
Automatic Curriculum Learning through Value Disagreement
Automatic Curriculum Learning through Value Disagreement
Yunzhi Zhang
Pieter Abbeel
Lerrel Pinto
76
109
0
17 Jun 2020
Quality Management of Machine Learning Systems
Quality Management of Machine Learning Systems
P. Santhanam
39
18
0
16 Jun 2020
Selective Question Answering under Domain Shift
Selective Question Answering under Domain Shift
Amita Kamath
Robin Jia
Percy Liang
OOD
61
214
0
16 Jun 2020
Density of States Estimation for Out-of-Distribution Detection
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
102
85
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCVUDEDLBDL
114
186
0
16 Jun 2020
Previous
123...555657...636465
Next