ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Feature Space Particle Inference for Neural Network Ensembles
Feature Space Particle Inference for Neural Network Ensembles
Shingo Yashima
Teppei Suzuki
Kohta Ishikawa
Ikuro Sato
Rei Kawakami
BDL
75
11
0
02 Jun 2022
Masked Bayesian Neural Networks : Computation and Optimality
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Yongdai Kim
TPM
53
1
0
02 Jun 2022
BayesFormer: Transformer with Uncertainty Estimation
BayesFormer: Transformer with Uncertainty Estimation
Karthik Abinav Sankararaman
Sinong Wang
Han Fang
UQCVBDL
60
11
0
02 Jun 2022
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object
  Detection
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection
Matthew A. Pitropov
Chengjie Huang
Vahdat Abdelzad
Krzysztof Czarnecki
Steven Waslander
3DPC
34
3
0
01 Jun 2022
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
  Modulation
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation
Mehmet Özgür Türkoglu
Alexander Becker
H. Gündüz
Mina Rezaei
Bernd Bischl
Rodrigo Caye Daudt
Stefano Dáronco
Jan Dirk Wegner
Konrad Schindler
FedMLUQCV
126
28
0
31 May 2022
Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian
  Processes to Hypothesis Learning
Bayesian Active Learning for Scanning Probe Microscopy: from Gaussian Processes to Hypothesis Learning
M. Ziatdinov
Yongtao Liu
K. Kelley
Rama K Vasudevan
Sergei V. Kalinin
AI4CE
51
53
0
30 May 2022
Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty
  Improve Model Performance?
Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance?
Christoph Koller
Goran Kauermann
Xiao Xiang Zhu
UQCV
61
6
0
30 May 2022
Deep Learning Methods for Fingerprint-Based Indoor Positioning: A Review
Deep Learning Methods for Fingerprint-Based Indoor Positioning: A Review
Fahad Al-homayani
Mohammad H. Mahoor
89
66
0
30 May 2022
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and
  Inference in Sparsity-Aware Modeling
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
128
78
0
28 May 2022
Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case
  Study on COVID-19 Chest X-ray Image
Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case Study on COVID-19 Chest X-ray Image
Lucy Nwosu
Xiangfang Li
Lijun Qian
Seungchan Kim
Xishuang Dong
76
4
0
27 May 2022
Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles
Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles
Alexandre Forel
Axel Parmentier
Thibaut Vidal
81
2
0
27 May 2022
Failure Detection in Medical Image Classification: A Reality Check and
  Benchmarking Testbed
Failure Detection in Medical Image Classification: A Reality Check and Benchmarking Testbed
Mélanie Bernhardt
Fabio De Sousa Ribeiro
Ben Glocker
56
10
0
27 May 2022
Deep Ensembles for Graphs with Higher-order Dependencies
Deep Ensembles for Graphs with Higher-order Dependencies
Steven J. Krieg
William C. Burgis
Patrick M. Soga
Nitesh Chawla
AI4CEGNN
52
3
0
27 May 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
101
2
0
27 May 2022
Why So Pessimistic? Estimating Uncertainties for Offline RL through
  Ensembles, and Why Their Independence Matters
Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence Matters
Seyed Kamyar Seyed Ghasemipour
S. Gu
Ofir Nachum
OffRL
90
72
0
27 May 2022
Selective Prediction via Training Dynamics
Selective Prediction via Training Dynamics
Stephan Rabanser
Anvith Thudi
Kimia Hamidieh
Adam Dziedzic
Nicolas Papernot
Akram Bin Sediq
Hamza Sokun
Nicolas Papernot
120
22
0
26 May 2022
Deep interpretable ensembles
Deep interpretable ensembles
Lucas Kook
Andrea Götschi
Philipp F. M. Baumann
Torsten Hothorn
Beate Sick
UQCV
60
9
0
25 May 2022
Rethinking Fano's Inequality in Ensemble Learning
Rethinking Fano's Inequality in Ensemble Learning
Terufumi Morishita
Gaku Morio
Shota Horiguchi
Hiroaki Ozaki
N. Nukaga
FedML
35
3
0
25 May 2022
What is Your Metric Telling You? Evaluating Classifier Calibration under
  Context-Specific Definitions of Reliability
What is Your Metric Telling You? Evaluating Classifier Calibration under Context-Specific Definitions of Reliability
John Kirchenbauer
Jacob Oaks
Eric Heim
UQCV
106
4
0
23 May 2022
PyRelationAL: a python library for active learning research and
  development
PyRelationAL: a python library for active learning research and development
P. Scherer
Thomas Gaudelet
Alison Pouplin
Alice Del Vecchio
S. SurajM
Oliver Bolton
Jyothish Soman
J. Taylor-King
Lindsay Edwards
KELM
58
0
0
23 May 2022
Transformer-based out-of-distribution detection for clinically safe
  segmentation
Transformer-based out-of-distribution detection for clinically safe segmentation
M. Graham
Petru-Daniel Tudosiu
P. Wright
W. H. Pinaya
J. U-King-im
...
H. Jäger
D. Werring
P. Nachev
Sebastien Ourselin
M. Jorge Cardoso
MedIm
86
21
0
21 May 2022
How Useful are Gradients for OOD Detection Really?
How Useful are Gradients for OOD Detection Really?
Conor Igoe
Youngseog Chung
I. Char
J. Schneider
OODD
93
26
0
20 May 2022
Test-time Batch Normalization
Test-time Batch Normalization
Tao Yang
Shenglong Zhou
Yuwang Wang
Yan Lu
Nanning Zheng
OOD
69
11
0
20 May 2022
Towards efficient feature sharing in MIMO architectures
Towards efficient feature sharing in MIMO architectures
Rémy Sun
Alexandre Ramé
Clément Masson
Nicolas Thome
Matthieu Cord
129
6
0
20 May 2022
On the Calibration of Probabilistic Classifier Sets
On the Calibration of Probabilistic Classifier Sets
Thomas Mortier
Viktor Bengs
Eyke Hüllermeier
Stijn Luca
Willem Waegeman
UQCV
78
7
0
20 May 2022
The Unreasonable Effectiveness of Deep Evidential Regression
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCVEDL
288
37
0
20 May 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural
  Networks
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
92
13
0
20 May 2022
Conformal Prediction with Temporal Quantile Adjustments
Conformal Prediction with Temporal Quantile Adjustments
Zhen Lin
Shubhendu Trivedi
Jimeng Sun
AI4TS
131
19
0
20 May 2022
Calibration Matters: Tackling Maximization Bias in Large-scale
  Advertising Recommendation Systems
Calibration Matters: Tackling Maximization Bias in Large-scale Advertising Recommendation Systems
Yewen Fan
Nian Si
Kun Zhang
26
2
0
19 May 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
258
138
0
19 May 2022
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Martin Ferianc
Miguel R. D. Rodrigues
UQCV
80
1
0
19 May 2022
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian
  Inference, Active Learning, and Active Sampling
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian Inference, Active Learning, and Active Sampling
Andreas Kirsch
Jannik Kossen
Y. Gal
UQCVBDL
97
3
0
18 May 2022
Dark solitons in Bose-Einstein condensates: a dataset for many-body
  physics research
Dark solitons in Bose-Einstein condensates: a dataset for many-body physics research
A. R. Fritsch
Shangjie Guo
Sophia M. Koh
I. Spielman
Justyna P. Zwolak
36
3
0
17 May 2022
Prioritizing Corners in OoD Detectors via Symbolic String Manipulation
Prioritizing Corners in OoD Detectors via Symbolic String Manipulation
Chih-Hong Cheng
Changshun Wu
Emmanouil Seferis
Saddek Bensalem
130
3
0
16 May 2022
Robust Representation via Dynamic Feature Aggregation
Robust Representation via Dynamic Feature Aggregation
Haozhe Liu
Haoqin Ji
Yuexiang Li
Nanjun He
Haoqian Wu
Feng Liu
Linlin Shen
Yefeng Zheng
AAMLOOD
91
3
0
16 May 2022
Aligning Robot Representations with Humans
Aligning Robot Representations with Humans
Andreea Bobu
Andi Peng
78
0
0
15 May 2022
A cGAN Ensemble-based Uncertainty-aware Surrogate Model for Offline
  Model-based Optimization in Industrial Control Problems
A cGAN Ensemble-based Uncertainty-aware Surrogate Model for Offline Model-based Optimization in Industrial Control Problems
Cheng Feng
OffRLAI4CE
103
0
0
15 May 2022
Evaluating Uncertainty Calibration for Open-Set Recognition
Evaluating Uncertainty Calibration for Open-Set Recognition
Zongyao Lyu
Nolan B. Gutierrez
William J. Beksi
UQCV
62
0
0
15 May 2022
Uncertainty-aware Personal Assistant for Making Personalized Privacy
  Decisions
Uncertainty-aware Personal Assistant for Making Personalized Privacy Decisions
Gonul Ayci
Murat Sensoy
Arzucan Özgür
P. Yolum
73
14
0
13 May 2022
Generalized Variational Inference in Function Spaces: Gaussian Measures
  meet Bayesian Deep Learning
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
Veit Wild
Robert Hu
Dino Sejdinovic
BDL
135
13
0
12 May 2022
ELODI: Ensemble Logit Difference Inhibition for Positive-Congruent
  Training
ELODI: Ensemble Logit Difference Inhibition for Positive-Congruent Training
Yue Zhao
Yantao Shen
Yuanjun Xiong
Shuo Yang
Wei Xia
Zhuowen Tu
Bernt Shiele
Stefano Soatto
BDL
103
6
0
12 May 2022
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Bat-Sheva Einbinder
Yaniv Romano
Matteo Sesia
Yanfei Zhou
UQCV
146
54
0
12 May 2022
Distinction Maximization Loss: Efficiently Improving Out-of-Distribution
  Detection and Uncertainty Estimation by Replacing the Loss and Calibrating
Distinction Maximization Loss: Efficiently Improving Out-of-Distribution Detection and Uncertainty Estimation by Replacing the Loss and Calibrating
David Macêdo
Cleber Zanchettin
Teresa B Ludermir
UQCV
129
4
0
12 May 2022
Extensible Machine Learning for Encrypted Network Traffic Application
  Labeling via Uncertainty Quantification
Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification
Steven Jorgensen
J. Holodnak
Jensen Dempsey
Karla de Souza
Ananditha Raghunath
Vernon Rivet
N. Demoes
Andrés Alejos
Allan B. Wollaber
AAML
97
32
0
11 May 2022
Recurrent Encoder-Decoder Networks for Vessel Trajectory Prediction with
  Uncertainty Estimation
Recurrent Encoder-Decoder Networks for Vessel Trajectory Prediction with Uncertainty Estimation
Samuele Capobianco
N. Forti
L. Millefiori
P. Braca
P. Willett
55
28
0
11 May 2022
Calibrating for Class Weights by Modeling Machine Learning
Calibrating for Class Weights by Modeling Machine Learning
Andrew Caplin
Daniel Martin
Philip Marx
35
1
0
10 May 2022
Investigating Generalization by Controlling Normalized Margin
Investigating Generalization by Controlling Normalized Margin
Alexander R. Farhang
Jeremy Bernstein
Kushal Tirumala
Yang Liu
Yisong Yue
83
6
0
08 May 2022
Scalable computation of prediction intervals for neural networks via
  matrix sketching
Scalable computation of prediction intervals for neural networks via matrix sketching
Alexander Fishkov
Maxim Panov
UQCV
56
1
0
06 May 2022
Controlled Dropout for Uncertainty Estimation
Controlled Dropout for Uncertainty Estimation
M. Hasan
Abbas Khosravi
Ibrahim Hossain
Ashikur Rahman
S. Nahavandi
BDLUQCV
93
1
0
06 May 2022
Quantification of Robotic Surgeries with Vision-Based Deep Learning
Quantification of Robotic Surgeries with Vision-Based Deep Learning
Dani Kiyasseh
Runzhuo Ma
Taseen F. Haque
J. Nguyen
C. Wagner
Anima Anandkumar
A. Hung
MedIm
49
3
0
06 May 2022
Previous
123...363738...636465
Next