ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00341
  4. Cited By
A Compositional Object-Based Approach to Learning Physical Dynamics

A Compositional Object-Based Approach to Learning Physical Dynamics

1 December 2016
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
    AI4CE
    OCL
ArXivPDFHTML

Papers citing "A Compositional Object-Based Approach to Learning Physical Dynamics"

50 / 258 papers shown
Title
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking
Exploiting Spatial Invariance for Scalable Unsupervised Object Tracking
Eric Crawford
Joelle Pineau
50
66
0
20 Nov 2019
Radically Compositional Cognitive Concepts
Radically Compositional Cognitive Concepts
T. S. C. Smithe
CoGe
20
0
0
14 Nov 2019
Driving Reinforcement Learning with Models
Driving Reinforcement Learning with Models
Meghana Rathi
P. Ferraro
G. Russo
15
10
0
11 Nov 2019
Estimation and Exploitation of Objects' Inertial Parameters in Robotic
  Grasping and Manipulation: A Survey
Estimation and Exploitation of Objects' Inertial Parameters in Robotic Grasping and Manipulation: A Survey
Nikos Mavrakis
Rustam Stolkin
11
47
0
11 Nov 2019
Entity Abstraction in Visual Model-Based Reinforcement Learning
Entity Abstraction in Visual Model-Based Reinforcement Learning
Rishi Veerapaneni
John D. Co-Reyes
Michael Chang
Michael Janner
Chelsea Finn
Jiajun Wu
J. Tenenbaum
Sergey Levine
OCL
OffRL
43
188
0
28 Oct 2019
Learning Compositional Koopman Operators for Model-Based Control
Learning Compositional Koopman Operators for Model-Based Control
Yunzhu Li
Hao He
Jiajun Wu
Dina Katabi
Antonio Torralba
32
113
0
18 Oct 2019
Object-centric Forward Modeling for Model Predictive Control
Object-centric Forward Modeling for Model Predictive Control
Yufei Ye
Dhiraj Gandhi
Abhinav Gupta
Shubham Tulsiani
LM&Ro
OCL
20
38
0
08 Oct 2019
Structured Object-Aware Physics Prediction for Video Modeling and
  Planning
Structured Object-Aware Physics Prediction for Video Modeling and Planning
Jannik Kossen
Karl Stelzner
Marcel Hussing
C. Voelcker
Kristian Kersting
OCL
29
70
0
06 Oct 2019
Making sense of sensory input
Making sense of sensory input
Maciej Wołczyk
Jacek Tabor
Johannes Welbl
Szymon Maszke
Marek Sergot
19
52
0
05 Oct 2019
CLEVRER: CoLlision Events for Video REpresentation and Reasoning
CLEVRER: CoLlision Events for Video REpresentation and Reasoning
Kexin Yi
Yuta Saito
Yunzhu Li
Pushmeet Kohli
Jiajun Wu
Antonio Torralba
J. Tenenbaum
NAI
43
457
0
03 Oct 2019
DiffTaichi: Differentiable Programming for Physical Simulation
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
18
372
0
01 Oct 2019
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
152
221
0
29 Sep 2019
Hamiltonian Graph Networks with ODE Integrators
Hamiltonian Graph Networks with ODE Integrators
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
31
177
0
27 Sep 2019
CoPhy: Counterfactual Learning of Physical Dynamics
CoPhy: Counterfactual Learning of Physical Dynamics
Fabien Baradel
Natalia Neverova
J. Mille
Greg Mori
Christian Wolf
CML
AI4CE
27
97
0
26 Sep 2019
Learning Temporal Attention in Dynamic Graphs with Bilinear Interactions
Learning Temporal Attention in Dynamic Graphs with Bilinear Interactions
Boris Knyazev
Carolyn Augusta
Graham W. Taylor
29
30
0
23 Sep 2019
Learning Symbolic Physics with Graph Networks
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
191
84
0
12 Sep 2019
Belief Regulated Dual Propagation Nets for Learning Action Effects on
  Groups of Articulated Objects
Belief Regulated Dual Propagation Nets for Learning Action Effects on Groups of Articulated Objects
Ahmet E. Tekden
Aykut Erdem
Erkut Erdem
Mert Imre
M. Yunus Seker
Emre Ugur
AI4CE
24
17
0
09 Sep 2019
Compositional Video Prediction
Compositional Video Prediction
Yufei Ye
Maneesh Singh
Abhinav Gupta
Shubham Tulsiani
18
85
0
22 Aug 2019
Neural Re-Simulation for Generating Bounces in Single Images
Neural Re-Simulation for Generating Bounces in Single Images
Carlo Innamorati
Bryan C. Russell
D. Kaufman
and Niloy J. Mitra
VGen
30
11
0
17 Aug 2019
On the difficulty of learning and predicting the long-term dynamics of
  bouncing objects
On the difficulty of learning and predicting the long-term dynamics of bouncing objects
Alberto Cenzato
Alberto Testolin
Marco Zorzi
14
4
0
31 Jul 2019
Rapid trial-and-error learning with simulation supports flexible tool
  use and physical reasoning
Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning
Kelsey R. Allen
Kevin A. Smith
J. Tenenbaum
LRM
31
108
0
22 Jul 2019
Order Matters: Shuffling Sequence Generation for Video Prediction
Order Matters: Shuffling Sequence Generation for Video Prediction
Junyan Wang
Bingzhang Hu
Yang Long
Yu Guan
24
12
0
20 Jul 2019
Vid2Param: Modelling of Dynamics Parameters from Video
Vid2Param: Modelling of Dynamics Parameters from Video
Martin Asenov
Michael G. Burke
Daniel Angelov
Todor Davchev
Kartic Subr
S. Ramamoorthy
VGen
14
5
0
15 Jul 2019
Estimating Mass Distribution of Articulated Objects using Non-prehensile
  Manipulation
Estimating Mass Distribution of Articulated Objects using Non-prehensile Manipulation
Niranjan Kumar Kannabiran
Irfan Essa
Sehoon Ha
Chenxi Liu
24
4
0
09 Jul 2019
Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep
  Neural Networks
Efficient Cloth Simulation using Miniature Cloth and Upscaling Deep Neural Networks
Tae Min Lee
Young-Jin Oh
In-Kwon Lee
AI4CE
18
6
0
09 Jul 2019
Intrinsic Motivation Driven Intuitive Physics Learning using Deep
  Reinforcement Learning with Intrinsic Reward Normalization
Intrinsic Motivation Driven Intuitive Physics Learning using Deep Reinforcement Learning with Intrinsic Reward Normalization
Jae-Woo Choi
Sung-eui Yoon
AI4CE
PINN
20
3
0
06 Jul 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
30
871
0
04 Jun 2019
Explainability Techniques for Graph Convolutional Networks
Explainability Techniques for Graph Convolutional Networks
Federico Baldassarre
Hossein Azizpour
GNN
FAtt
33
264
0
31 May 2019
What Can Neural Networks Reason About?
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
27
240
0
30 May 2019
Neural Consciousness Flow
Neural Consciousness Flow
Xiaoran Xu
Wei Feng
Zhiqing Sun
Zhihong Deng
GNN
AI4CE
27
2
0
30 May 2019
Hypothesis-Driven Skill Discovery for Hierarchical Deep Reinforcement
  Learning
Hypothesis-Driven Skill Discovery for Hierarchical Deep Reinforcement Learning
Caleb Chuck
Supawit Chockchowwat
S. Niekum
19
14
0
27 May 2019
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation
  from Video
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation from Video
Miguel Jaques
Michael G. Burke
Timothy M. Hospedales
VGen
PINN
21
45
0
27 May 2019
Unsupervised Intuitive Physics from Past Experiences
Unsupervised Intuitive Physics from Past Experiences
Sébastien Ehrhardt
Áron Monszpart
Niloy J. Mitra
Andrea Vedaldi
OOD
PINN
AI4CE
SSL
43
2
0
26 May 2019
Adding Intuitive Physics to Neural-Symbolic Capsules Using Interaction
  Networks
Adding Intuitive Physics to Neural-Symbolic Capsules Using Interaction Networks
Michael D Kissner
Helmut A. Mayer
OCL
PINN
16
2
0
23 May 2019
Explainable Machine Learning for Scientific Insights and Discoveries
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
35
659
0
21 May 2019
Let's Push Things Forward: A Survey on Robot Pushing
Let's Push Things Forward: A Survey on Robot Pushing
Jochen Stüber
Claudio Zito
Rustam Stolkin
AI4CE
22
95
0
13 May 2019
Graph Element Networks: adaptive, structured computation and memory
Graph Element Networks: adaptive, structured computation and memory
Ferran Alet
Adarsh K. Jeewajee
Maria Bauzá
Alberto Rodriguez
Tomas Lozano-Perez
L. Kaelbling
AI4CE
GNN
27
74
0
18 Apr 2019
Object-Oriented Dynamics Learning through Multi-Level Abstraction
Object-Oriented Dynamics Learning through Multi-Level Abstraction
Guangxiang Zhu
Jianhao Wang
Zhizhou Ren
Zichuan Lin
Chongjie Zhang
AI4CE
32
5
0
16 Apr 2019
Bounce and Learn: Modeling Scene Dynamics with Real-World Bounces
Bounce and Learn: Modeling Scene Dynamics with Real-World Bounces
Senthil Purushwalkam
Abhinav Gupta
D. Kaufman
Bryan C. Russell
3DH
SSL
22
20
0
15 Apr 2019
Combining Physical Simulators and Object-Based Networks for Control
Combining Physical Simulators and Object-Based Networks for Control
Anurag Ajay
Maria Bauzá
Jiajun Wu
Nima Fazeli
J. Tenenbaum
Alberto Rodriguez
L. Kaelbling
AI4CE
17
45
0
13 Apr 2019
Structured agents for physical construction
Structured agents for physical construction
V. Bapst
Alvaro Sanchez-Gonzalez
Carl Doersch
Kimberly L. Stachenfeld
Pushmeet Kohli
Peter W. Battaglia
Jessica B. Hamrick
AI4CE
30
99
0
05 Apr 2019
Informed Machine Learning -- A Taxonomy and Survey of Integrating
  Knowledge into Learning Systems
Informed Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems
Laura von Rueden
S. Mayer
Katharina Beckh
B. Georgiev
Sven Giesselbach
...
Rajkumar Ramamurthy
Michal Walczak
Jochen Garcke
Christian Bauckhage
Jannis Schuecker
39
626
0
29 Mar 2019
On Deep Set Learning and the Choice of Aggregations
On Deep Set Learning and the Choice of Aggregations
Maximilian Sölch
A. Akhundov
Patrick van der Smagt
Justin Bayer
TDI
27
19
0
18 Mar 2019
Unsupervised Discovery of Parts, Structure, and Dynamics
Unsupervised Discovery of Parts, Structure, and Dynamics
Zhenjia Xu
Zhijian Liu
Chen Sun
Kevin Patrick Murphy
William T. Freeman
J. Tenenbaum
Jiajun Wu
OCL
38
61
0
12 Mar 2019
Joint Perception and Control as Inference with an Object-based
  Implementation
Joint Perception and Control as Inference with an Object-based Implementation
Minne Li
Zheng Tian
Pranav Nashikkar
Ian Davies
Ying Wen
Jun Wang
24
2
0
04 Mar 2019
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Andrew N. Carr
David Wingate
BDL
37
12
0
26 Feb 2019
Stochastic Prediction of Multi-Agent Interactions from Partial
  Observations
Stochastic Prediction of Multi-Agent Interactions from Partial Observations
Chen Sun
Per Karlsson
Jiajun Wu
J. Tenenbaum
Kevin Patrick Murphy
33
89
0
25 Feb 2019
Emulating Human Developmental Stages with Bayesian Neural Networks
Emulating Human Developmental Stages with Bayesian Neural Networks
Marcel Binz
Dominik M. Endres
10
3
0
20 Feb 2019
Differentiable Physics-informed Graph Networks
Differentiable Physics-informed Graph Networks
Sungyong Seo
Yan Liu
PINN
AI4CE
25
67
0
08 Feb 2019
Active Localization of Gas Leaks using Fluid Simulation
Active Localization of Gas Leaks using Fluid Simulation
Martin Asenov
M. Rutkauskas
D. Reid
Kartic Subr
S. Ramamoorthy
10
19
0
28 Jan 2019
Previous
123456
Next