43
10

Driving Reinforcement Learning with Models

Abstract

In this paper we propose a new approach to complement reinforcement learning (RL) with model-based control (in particular, Model Predictive Control - MPC). We introduce an algorithm, the MPC augmented RL (MPRL) that combines RL and MPC in a novel way so that they can augment each other's strengths. We demonstrate the effectiveness of the MPRL by letting it play against the Atari game Pong. For this task, the results highlight how MPRL is able to outperform both RL and MPC when these are used individually.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.