Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.00341
Cited By
A Compositional Object-Based Approach to Learning Physical Dynamics
1 December 2016
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Compositional Object-Based Approach to Learning Physical Dynamics"
8 / 258 papers shown
Title
Surface Networks
Ilya Kostrikov
Zhongshi Jiang
Daniele Panozzo
Denis Zorin
Joan Bruna
30
99
0
30 May 2017
Model-Based Planning with Discrete and Continuous Actions
Mikael Henaff
William F. Whitney
Yann LeCun
30
16
0
19 May 2017
Information-theoretic Model Identification and Policy Search using Physics Engines with Application to Robotic Manipulation
Shaojun Zhu
A. Kimmel
Abdeslam Boularias
25
8
0
22 Mar 2017
One-Shot Imitation Learning
Yan Duan
Marcin Andrychowicz
Bradly C. Stadie
Jonathan Ho
Jonas Schneider
Ilya Sutskever
Pieter Abbeel
Wojciech Zaremba
OffRL
23
682
0
21 Mar 2017
Learning A Physical Long-term Predictor
Sébastien Ehrhardt
Áron Monszpart
Niloy J. Mitra
Andrea Vedaldi
AI4CE
32
65
0
01 Mar 2017
Tracking the World State with Recurrent Entity Networks
Mikael Henaff
Jason Weston
Arthur Szlam
Antoine Bordes
Yann LeCun
KELM
32
227
0
12 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
283
1,401
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
264
3,246
0
24 Nov 2016
Previous
1
2
3
4
5
6