Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.08733
Cited By
GPflow: A Gaussian process library using TensorFlow
27 October 2016
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GPflow: A Gaussian process library using TensorFlow"
50 / 269 papers shown
Title
Bayesian Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
GP
22
69
0
07 May 2019
Learning Causality: Synthesis of Large-Scale Causal Networks from High-Dimensional Time Series Data
Mark-Oliver Stehr
P. Avar
Andrew R. Korte
Lida Parvin
Ziad J. Sahab
...
Brian M. Davis
Christine A. Morton
Christopher J. Sevinsky
M. Zavodszky
A. Vertes
AI4TS
CML
11
5
0
06 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
18
23
0
10 Apr 2019
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
30
17
0
04 Apr 2019
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
39
105
0
03 Apr 2019
Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Nimish Awalgaonkar
Ilias Bilionis
Xiaoqi Liu
P. Karava
Athanasios Tzempelikos
AI4TS
AI4CE
38
2
0
21 Mar 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
24
226
0
19 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
30
109
0
18 Mar 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLL
BDL
17
184
0
31 Jan 2019
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
Heiko Strathmann
Gunnar Rätsch
BDL
FedML
MLT
26
29
0
23 Jan 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
32
24
0
21 Dec 2018
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
27
121
0
10 Dec 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
27
55
0
27 Nov 2018
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
18
9
0
27 Nov 2018
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
21
26
0
03 Nov 2018
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in the Time-Domain
Pablo A. Alvarado
Mauricio A. Alvarez
D. Stowell
6
7
0
30 Oct 2018
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
GP
13
33
0
29 Oct 2018
Data Association with Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
21
0
0
16 Oct 2018
Tuning Fairness by Balancing Target Labels
T. Kehrenberg
Zexun Chen
Novi Quadrianto
25
4
0
12 Oct 2018
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
33
17
0
10 Oct 2018
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
26
42
0
09 Oct 2018
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
33
60
0
06 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
8
1,077
0
28 Sep 2018
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
19
43
0
24 Sep 2018
Non-Parametric Variational Inference with Graph Convolutional Networks for Gaussian Processes
Linfeng Liu
Liping Liu
BDL
23
0
0
08 Sep 2018
Bayesian Nonparametric Spectral Estimation
Felipe A. Tobar
19
29
0
06 Sep 2018
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Kai Chen
Twan van Laarhoven
P. Groot
Jinsong Chen
E. Marchiori
20
11
0
07 Aug 2018
Multitask Gaussian Process with Hierarchical Latent Interactions
Kai Chen
Twan van Laarhoven
E. Marchiori
Feng Yin
Shuguang Cui
17
6
0
03 Aug 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
43
35
0
02 Aug 2018
Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization
Dipti Jasrasaria
Edward O. Pyzer-Knapp
21
21
0
03 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
33
683
0
03 Jul 2018
Scalable Multi-Class Bayesian Support Vector Machines for Structured and Unstructured Data
Martin Wistuba
Ambrish Rawat
BDL
30
2
0
07 Jun 2018
Grouped Gaussian Processes for Solar Power Prediction
A. Dahl
Edwin V. Bonilla
8
20
0
07 Jun 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDL
GP
33
29
0
05 Jun 2018
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios
Raffaello Camoriano
Pietro Michiardi
Lorenzo Rosasco
Maurizio Filippone
UQCV
35
74
0
28 May 2018
Efficient Inference in Multi-task Cox Process Models
Virginia Aglietti
Theodoros Damoulas
Edwin V. Bonilla
11
8
0
24 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
88
550
0
30 Apr 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
37
27
0
04 Apr 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
30
85
0
24 Mar 2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
25
94
0
16 Mar 2018
Variational zero-inflated Gaussian processes with sparse kernels
Pashupati Hegde
Markus Heinonen
Samuel Kaski
19
5
0
13 Mar 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
41
365
0
26 Feb 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
35
71
0
24 Feb 2018
Identifying Sources and Sinks in the Presence of Multiple Agents with Gaussian Process Vector Calculus
Adam D. Cobb
Richard Everett
Andrew Markham
Stephen J. Roberts
10
7
0
22 Feb 2018
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation
F. Wenzel
Théo Galy-Fajou
Christian Donner
Marius Kloft
Manfred Opper
34
36
0
18 Feb 2018
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
35
52
0
08 Feb 2018
Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms
Ahmed Alaa
Mihaela van der Schaar
CML
18
42
0
24 Dec 2017
GPflowOpt: A Bayesian Optimization Library using TensorFlow
Nicolas Knudde
J. Herten
T. Dhaene
Ivo Couckuyt
GP
25
78
0
10 Nov 2017
Fidelity-Weighted Learning
Mostafa Dehghani
Arash Mehrjou
Stephan Gouws
J. Kamps
Bernhard Schölkopf
NoLa
FedML
44
75
0
08 Nov 2017
Previous
1
2
3
4
5
6
Next