ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.08733
  4. Cited By
GPflow: A Gaussian process library using TensorFlow

GPflow: A Gaussian process library using TensorFlow

27 October 2016
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
    GP
ArXivPDFHTML

Papers citing "GPflow: A Gaussian process library using TensorFlow"

50 / 269 papers shown
Title
Bayesian Optimization using Deep Gaussian Processes
Bayesian Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
GP
22
69
0
07 May 2019
Learning Causality: Synthesis of Large-Scale Causal Networks from
  High-Dimensional Time Series Data
Learning Causality: Synthesis of Large-Scale Causal Networks from High-Dimensional Time Series Data
Mark-Oliver Stehr
P. Avar
Andrew R. Korte
Lida Parvin
Ziad J. Sahab
...
Brian M. Davis
Christine A. Morton
Christopher J. Sevinsky
M. Zavodszky
A. Vertes
AI4TS
CML
11
5
0
06 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational
  Harmonic Features
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
18
23
0
10 Apr 2019
Robust Deep Gaussian Processes
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
30
17
0
04 Apr 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
39
105
0
03 Apr 2019
Learning Personalized Thermal Preferences via Bayesian Active Learning
  with Unimodality Constraints
Learning Personalized Thermal Preferences via Bayesian Active Learning with Unimodality Constraints
Nimish Awalgaonkar
Ilias Bilionis
Xiaoqi Liu
P. Karava
Athanasios Tzempelikos
AI4TS
AI4CE
38
2
0
21 Mar 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
24
226
0
19 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
30
109
0
18 Mar 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLL
BDL
17
184
0
31 Jan 2019
Meta-Learning Mean Functions for Gaussian Processes
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
Heiko Strathmann
Gunnar Rätsch
BDL
FedML
MLT
26
29
0
23 Jan 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia
  Language
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
32
24
0
21 Dec 2018
Bayesian Layers: A Module for Neural Network Uncertainty
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
27
121
0
10 Dec 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
27
55
0
27 Nov 2018
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
18
9
0
27 Nov 2018
Large-scale Heteroscedastic Regression via Gaussian Process
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
21
26
0
03 Nov 2018
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in
  the Time-Domain
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in the Time-Domain
Pablo A. Alvarado
Mauricio A. Alvarez
D. Stowell
6
7
0
30 Oct 2018
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization
  Bounds
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
GP
13
33
0
29 Oct 2018
Data Association with Gaussian Processes
Data Association with Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
21
0
0
16 Oct 2018
Tuning Fairness by Balancing Target Labels
Tuning Fairness by Balancing Target Labels
T. Kehrenberg
Zexun Chen
Novi Quadrianto
25
4
0
12 Oct 2018
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
33
17
0
10 Oct 2018
Deep learning with differential Gaussian process flows
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
26
42
0
09 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
33
60
0
06 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
8
1,077
0
28 Sep 2018
Orthogonally Decoupled Variational Gaussian Processes
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
19
43
0
24 Sep 2018
Non-Parametric Variational Inference with Graph Convolutional Networks
  for Gaussian Processes
Non-Parametric Variational Inference with Graph Convolutional Networks for Gaussian Processes
Linfeng Liu
Liping Liu
BDL
23
0
0
08 Sep 2018
Bayesian Nonparametric Spectral Estimation
Bayesian Nonparametric Spectral Estimation
Felipe A. Tobar
19
29
0
06 Sep 2018
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Kai Chen
Twan van Laarhoven
P. Groot
Jinsong Chen
E. Marchiori
20
11
0
07 Aug 2018
Multitask Gaussian Process with Hierarchical Latent Interactions
Multitask Gaussian Process with Hierarchical Latent Interactions
Kai Chen
Twan van Laarhoven
E. Marchiori
Feng Yin
Shuguang Cui
17
6
0
03 Aug 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
43
35
0
02 Aug 2018
Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization
Dynamic Control of Explore/Exploit Trade-Off In Bayesian Optimization
Dipti Jasrasaria
Edward O. Pyzer-Knapp
21
21
0
03 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
33
683
0
03 Jul 2018
Scalable Multi-Class Bayesian Support Vector Machines for Structured and
  Unstructured Data
Scalable Multi-Class Bayesian Support Vector Machines for Structured and Unstructured Data
Martin Wistuba
Ambrish Rawat
BDL
30
2
0
07 Jun 2018
Grouped Gaussian Processes for Solar Power Prediction
Grouped Gaussian Processes for Solar Power Prediction
A. Dahl
Edwin V. Bonilla
8
20
0
07 Jun 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Deep Gaussian Processes with Convolutional Kernels
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDL
GP
33
29
0
05 Jun 2018
Dirichlet-based Gaussian Processes for Large-scale Calibrated
  Classification
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios
Raffaello Camoriano
Pietro Michiardi
Lorenzo Rosasco
Maurizio Filippone
UQCV
35
74
0
28 May 2018
Efficient Inference in Multi-task Cox Process Models
Efficient Inference in Multi-task Cox Process Models
Virginia Aglietti
Theodoros Damoulas
Edwin V. Bonilla
11
8
0
24 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
88
550
0
30 Apr 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
37
27
0
04 Apr 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
30
85
0
24 Mar 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
25
94
0
16 Mar 2018
Variational zero-inflated Gaussian processes with sparse kernels
Variational zero-inflated Gaussian processes with sparse kernels
Pashupati Hegde
Markus Heinonen
Samuel Kaski
19
5
0
13 Mar 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
41
365
0
26 Feb 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
35
71
0
24 Feb 2018
Identifying Sources and Sinks in the Presence of Multiple Agents with
  Gaussian Process Vector Calculus
Identifying Sources and Sinks in the Presence of Multiple Agents with Gaussian Process Vector Calculus
Adam D. Cobb
Richard Everett
Andrew Markham
Stephen J. Roberts
10
7
0
22 Feb 2018
Efficient Gaussian Process Classification Using Polya-Gamma Data
  Augmentation
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation
F. Wenzel
Théo Galy-Fajou
Christian Donner
Marius Kloft
Manfred Opper
34
36
0
18 Feb 2018
Few-shot learning of neural networks from scratch by pseudo example
  optimization
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
35
52
0
08 Feb 2018
Bayesian Nonparametric Causal Inference: Information Rates and Learning
  Algorithms
Bayesian Nonparametric Causal Inference: Information Rates and Learning Algorithms
Ahmed Alaa
Mihaela van der Schaar
CML
18
42
0
24 Dec 2017
GPflowOpt: A Bayesian Optimization Library using TensorFlow
GPflowOpt: A Bayesian Optimization Library using TensorFlow
Nicolas Knudde
J. Herten
T. Dhaene
Ivo Couckuyt
GP
25
78
0
10 Nov 2017
Fidelity-Weighted Learning
Fidelity-Weighted Learning
Mostafa Dehghani
Arash Mehrjou
Stephan Gouws
J. Kamps
Bernhard Schölkopf
NoLa
FedML
44
75
0
08 Nov 2017
Previous
123456
Next