ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.08733
  4. Cited By
GPflow: A Gaussian process library using TensorFlow

GPflow: A Gaussian process library using TensorFlow

27 October 2016
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
    GP
ArXivPDFHTML

Papers citing "GPflow: A Gaussian process library using TensorFlow"

50 / 269 papers shown
Title
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
43
25
0
26 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDL
UQCV
26
28
0
14 Jun 2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice
  for Scalable Gaussian Processes
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
Sanyam Kapoor
Marc Finzi
Ke Alexander Wang
A. Wilson
49
11
0
12 Jun 2021
The Fast Kernel Transform
The Fast Kernel Transform
J. Ryan
Sebastian Ament
Carla P. Gomes
Anil Damle
20
8
0
08 Jun 2021
Multi-output Gaussian Processes for Uncertainty-aware Recommender
  Systems
Multi-output Gaussian Processes for Uncertainty-aware Recommender Systems
Yinchong Yang
Florian Buettner
BDL
10
6
0
08 Jun 2021
Gaussian Processes on Hypergraphs
Gaussian Processes on Hypergraphs
Thomas Pinder
K. Turnbull
Christopher Nemeth
David Leslie
33
4
0
03 Jun 2021
Empirical Models for Multidimensional Regression of Fission Systems
Empirical Models for Multidimensional Regression of Fission Systems
A. Dave
Jiankai Yu
Jarod N Wilson
B. Phillips
K. Sun
Benoit Forget
8
1
0
30 May 2021
Slow Momentum with Fast Reversion: A Trading Strategy Using Deep
  Learning and Changepoint Detection
Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection
Kieran Wood
Stephen J. Roberts
S. Zohren
16
21
0
28 May 2021
The Graph Cut Kernel for Ranked Data
The Graph Cut Kernel for Ranked Data
Michelangelo Conserva
M. Deisenroth
Sesh Kumar
17
0
0
26 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
18
30
0
10 May 2021
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
M. Lemercier
C. Salvi
Thomas Cass
Edwin V. Bonilla
Theodoros Damoulas
Terry Lyons
17
24
0
10 May 2021
Bayesian Algorithm Execution: Estimating Computable Properties of
  Black-box Functions Using Mutual Information
Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
Willie Neiswanger
Ke Alexander Wang
Stefano Ermon
MLAU
42
30
0
19 Apr 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
35
23
0
12 Apr 2021
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
John Mcleod
Hrvoje Stojić
Vincent Adam
Dongho Kim
Jordi Grau-Moya
Peter Vrancx
Felix Leibfried
OffRL
21
2
0
26 Mar 2021
Detecting Label Noise via Leave-One-Out Cross-Validation
Detecting Label Noise via Leave-One-Out Cross-Validation
Yu-Hang Tang
Yuanran Zhu
W. A. Jong
25
3
0
21 Mar 2021
Sparse Algorithms for Markovian Gaussian Processes
Sparse Algorithms for Markovian Gaussian Processes
William J. Wilkinson
Arno Solin
Vincent Adam
19
12
0
19 Mar 2021
The Minecraft Kernel: Modelling correlated Gaussian Processes in the
  Fourier domain
The Minecraft Kernel: Modelling correlated Gaussian Processes in the Fourier domain
F. Simpson
A. Boukouvalas
Václav Cadek
E. Sarkans
N. Durrande
17
2
0
11 Mar 2021
Gemini: Dynamic Bias Correction for Autonomous Experimentation and
  Molecular Simulation
Gemini: Dynamic Bias Correction for Autonomous Experimentation and Molecular Simulation
Riley J. Hickman
Florian Hase
L. Roch
Alán Aspuru-Guzik
26
4
0
05 Mar 2021
Highly Efficient Representation and Active Learning Framework and Its
  Application to Imbalanced Medical Image Classification
Highly Efficient Representation and Active Learning Framework and Its Application to Imbalanced Medical Image Classification
Heng Hao
H. Moon
Sima Didari
J. Woo
P. Bangert
AI4TS
19
0
0
25 Feb 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Numerical issues in maximum likelihood parameter estimation for Gaussian
  process interpolation
Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation
S. Basak
S. Petit
Julien Bect
E. Vázquez
15
14
0
24 Jan 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Anh Tong
Toan M. Tran
Hung Bui
Jaesik Choi
14
2
0
21 Dec 2020
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
Are we Forgetting about Compositional Optimisers in Bayesian
  Optimisation?
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
19
13
0
15 Dec 2020
Design of Experiments for Verifying Biomolecular Networks
Design of Experiments for Verifying Biomolecular Networks
Ruby Sedgwick
John A. Goertz
Molly Stevens
Ruth Misener
Mark van der Wilk
9
1
0
20 Nov 2020
Understanding Variational Inference in Function-Space
Understanding Variational Inference in Function-Space
David R. Burt
Sebastian W. Ober
Adrià Garriga-Alonso
Mark van der Wilk
BDL
19
41
0
18 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Marginalised Gaussian Processes with Nested Sampling
Marginalised Gaussian Processes with Nested Sampling
F. Simpson
V. Lalchand
C. Rasmussen
GP
12
10
0
30 Oct 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
79
0
29 Oct 2020
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Scalable Bayesian Optimization with Sparse Gaussian Process Models
Ang Yang
21
0
0
26 Oct 2020
Stationary Activations for Uncertainty Calibration in Deep Learning
Stationary Activations for Uncertainty Calibration in Deep Learning
Lassi Meronen
Christabella Irwanto
Arno Solin
UQCV
BDL
14
18
0
19 Oct 2020
Stochastic embeddings of dynamical phenomena through variational
  autoencoders
Stochastic embeddings of dynamical phenomena through variational autoencoders
C. A. García
P. Félix
J. Presedo
A. Otero
BDL
24
2
0
13 Oct 2020
Ensembling geophysical models with Bayesian Neural Networks
Ensembling geophysical models with Bayesian Neural Networks
Ushnish Sengupta
Matt Amos
J. S. Hosking
C. Rasmussen
M. Juniper
P. Young
UQCV
BDL
6
17
0
07 Oct 2020
Short-term prediction of photovoltaic power generation using Gaussian
  process regression
Short-term prediction of photovoltaic power generation using Gaussian process regression
Y. A. Lawati
Jack Kelly
D. Stowell
9
2
0
05 Oct 2020
Gaussian Process Molecule Property Prediction with FlowMO
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
21
23
0
02 Oct 2020
Stein Variational Gaussian Processes
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
22
7
0
25 Sep 2020
An Intuitive Tutorial to Gaussian Process Regression
An Intuitive Tutorial to Gaussian Process Regression
Jie Wang
GP
17
74
0
22 Sep 2020
A machine learning approach for efficient multi-dimensional integration
A machine learning approach for efficient multi-dimensional integration
B. Yoon
9
8
0
14 Sep 2020
SafePILCO: a software tool for safe and data-efficient policy synthesis
SafePILCO: a software tool for safe and data-efficient policy synthesis
Kyriakos Polymenakos
Nikitas Rontsis
Alessandro Abate
Stephen J. Roberts
32
6
0
07 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
29
69
0
01 Aug 2020
Multioutput Gaussian Processes with Functional Data: A Study on Coastal
  Flood Hazard Assessment
Multioutput Gaussian Processes with Functional Data: A Study on Coastal Flood Hazard Assessment
A. F. López-Lopera
D. Idier
J. Rohmer
François Bachoc
16
22
0
28 Jul 2020
Latent-space time evolution of non-intrusive reduced-order models using
  Gaussian process emulation
Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation
R. Maulik
T. Botsas
Nesar Ramachandra
L. Mason
Indranil Pan
6
29
0
23 Jul 2020
Orthogonally Decoupled Variational Fourier Features
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
13
0
0
13 Jul 2020
State Space Expectation Propagation: Efficient Inference Schemes for
  Temporal Gaussian Processes
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
16
13
0
12 Jul 2020
Overview of Gaussian process based multi-fidelity techniques with
  variable relationship between fidelities
Overview of Gaussian process based multi-fidelity techniques with variable relationship between fidelities
Loïc Brevault
M. Balesdent
Ali Hebbal
32
69
0
30 Jun 2020
Multi-fidelity modeling with different input domain definitions using
  Deep Gaussian Processes
Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
AI4CE
21
36
0
29 Jun 2020
Data-Driven Discovery of Molecular Photoswitches with Multioutput Gaussian Processes
Ryan-Rhys Griffiths
Jake L. Greenfield
Aditya R. Thawani
Arian R. Jamasb
Henry B. Moss
Anthony Bourached
Penelope Jones
William McCorkindale
Alexander A. Aldrick
Matthew J. Fuchter Alpha A. Lee
37
13
0
28 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian
  Optimisation
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
19
2
0
25 Jun 2020
Previous
123456
Next