ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.08733
  4. Cited By
GPflow: A Gaussian process library using TensorFlow

GPflow: A Gaussian process library using TensorFlow

27 October 2016
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
    GP
ArXivPDFHTML

Papers citing "GPflow: A Gaussian process library using TensorFlow"

50 / 269 papers shown
Title
Geometric constraints improve inference of sparsely observed stochastic
  dynamics
Geometric constraints improve inference of sparsely observed stochastic dynamics
Dimitra Maoutsa
AI4CE
30
3
0
02 Apr 2023
GaPT: Gaussian Process Toolkit for Online Regression with Application to
  Learning Quadrotor Dynamics
GaPT: Gaussian Process Toolkit for Online Regression with Application to Learning Quadrotor Dynamics
Francesco Crocetti
Jeffrey Mao
Alessandro Saviolo
G. Costante
Giuseppe Loianno
GP
14
5
0
14 Mar 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
33
17
0
16 Feb 2023
Toward Large Kernel Models
Toward Large Kernel Models
Amirhesam Abedsoltan
M. Belkin
Parthe Pandit
38
16
0
06 Feb 2023
Light-Weight Pointcloud Representation with Sparse Gaussian Process
Light-Weight Pointcloud Representation with Sparse Gaussian Process
Mahmoud Ali
Lantao Liu
11
7
0
26 Jan 2023
Scalable Gaussian Process Inference with Stan
Scalable Gaussian Process Inference with Stan
Till Hoffmann
J. Onnela
GP
24
4
0
21 Jan 2023
Geometric path augmentation for inference of sparsely observed
  stochastic nonlinear systems
Geometric path augmentation for inference of sparsely observed stochastic nonlinear systems
Dimitra Maoutsa
32
1
0
19 Jan 2023
Blockchain For Mobile Health Applications: Acceleration With GPU
  Computing
Blockchain For Mobile Health Applications: Acceleration With GPU Computing
G. Drakopoulos
Michael Marountas
Xenophon Liapakis
Giannis Tzimas
Phivos Mylonas
S. Sioutas
11
2
0
11 Jan 2023
GAUCHE: A Library for Gaussian Processes in Chemistry
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths
Leo Klarner
Henry B. Moss
Aditya Ravuri
Sang T. Truong
...
A. Lee
Bingqing Cheng
Alán Aspuru-Guzik
P. Schwaller
Jian Tang
GP
37
40
0
06 Dec 2022
Calibration and generalizability of probabilistic models on low-data
  chemical datasets with DIONYSUS
Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS
Gary Tom
Riley J. Hickman
Aniket N. Zinzuwadia
A. Mohajeri
Benjamín Sánchez-Lengeling
A. Aspuru‐Guzik
23
16
0
03 Dec 2022
The Implicit Delta Method
The Implicit Delta Method
Nathan Kallus
James McInerney
23
1
0
11 Nov 2022
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
V. Lalchand
W. Bruinsma
David R. Burt
C. Rasmussen
GP
17
6
0
04 Nov 2022
Structural Kernel Search via Bayesian Optimization and Symbolical
  Optimal Transport
Structural Kernel Search via Bayesian Optimization and Symbolical Optimal Transport
M. Bitzer
Mona Meister
Christoph Zimmer
12
9
0
21 Oct 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Uncertainty Estimation for Multi-view Data: The Power of Seeing the
  Whole Picture
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
67
12
0
06 Oct 2022
Physically Meaningful Uncertainty Quantification in Probabilistic Wind
  Turbine Power Curve Models as a Damage Sensitive Feature
Physically Meaningful Uncertainty Quantification in Probabilistic Wind Turbine Power Curve Models as a Damage Sensitive Feature
J. H. Mclean
Matthew R. Jones
Brandon J. O'Connell
Eoghan Maguire
T. Rogers
27
6
0
30 Sep 2022
Scalable Multi-Agent Lab Framework for Lab Optimization
Scalable Multi-Agent Lab Framework for Lab Optimization
A. Kusne
A. McDannald
29
17
0
19 Aug 2022
Markovian Gaussian Process Variational Autoencoders
Markovian Gaussian Process Variational Autoencoders
Harrison Zhu
Carles Balsells Rodas
Yingzhen Li
BDL
AI4TS
48
15
0
12 Jul 2022
Memory Safe Computations with XLA Compiler
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
37
8
0
28 Jun 2022
Nonparametric Multi-shape Modeling with Uncertainty Quantification
Nonparametric Multi-shape Modeling with Uncertainty Quantification
Hengrui Luo
Justin Strait
25
3
0
18 Jun 2022
Scalable First-Order Bayesian Optimization via Structured Automatic
  Differentiation
Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation
Sebastian Ament
Carla P. Gomes
23
8
0
16 Jun 2022
Improving Accuracy of Interpretability Measures in Hyperparameter
  Optimization via Bayesian Algorithm Execution
Improving Accuracy of Interpretability Measures in Hyperparameter Optimization via Bayesian Algorithm Execution
Julia Moosbauer
Giuseppe Casalicchio
Marius Lindauer
B. Bischl
35
2
0
11 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
24
6
0
30 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Probabilistic Models for Manufacturing Lead Times
Probabilistic Models for Manufacturing Lead Times
Recep Yusuf Bekci
Yacine Mahdid
Jinling Xing
Nikita Letov
Ying Zhang
Zahid Pasha
27
0
0
28 Apr 2022
Time Series Prediction by Multi-task GPR with Spatiotemporal Information
  Transformation
Time Series Prediction by Multi-task GPR with Spatiotemporal Information Transformation
Peng Tao
Xiaohu Hao
Jie Cheng
Luonan Chen
AI4TS
9
0
0
26 Apr 2022
Maximum Likelihood Estimation in Gaussian Process Regression is
  Ill-Posed
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
Toni Karvonen
Chris J. Oates
GP
11
26
0
17 Mar 2022
Non-Parametric Modeling of Spatio-Temporal Human Activity Based on
  Mobile Robot Observations
Non-Parametric Modeling of Spatio-Temporal Human Activity Based on Mobile Robot Observations
Marvin Stuede
Moritz Schappler
24
3
0
14 Mar 2022
Video is All You Need: Attacking PPG-based Biometric Authentication
Video is All You Need: Attacking PPG-based Biometric Authentication
Lin Li
Chao Chen
Lei Pan
Jun Zhang
Yang Xiang
AAML
21
13
0
02 Mar 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
24
7
0
25 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-Shan Shiu
A. Bernacchia
33
18
0
08 Feb 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
24
12
0
17 Jan 2022
Comparing Machine Learning and Interpolation Methods for Loop-Level
  Calculations
Comparing Machine Learning and Interpolation Methods for Loop-Level Calculations
Ibrahim Chahrour
J. Wells
18
12
0
29 Nov 2021
Non-separable Spatio-temporal Graph Kernels via SPDEs
Non-separable Spatio-temporal Graph Kernels via SPDEs
A. Nikitin
S. T. John
Arno Solin
Samuel Kaski
AI4TS
33
17
0
16 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
29
20
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
24
31
0
02 Nov 2021
Aligned Multi-Task Gaussian Process
Aligned Multi-Task Gaussian Process
O. Mikheeva
Ieva Kazlauskaite
Adam Hartshorne
Hedvig Kjellström
Carl Henrik Ek
Neill D. F. Campbell
AI4TS
13
2
0
29 Oct 2021
Scalable Inference in SDEs by Direct Matching of the
  Fokker-Planck-Kolmogorov Equation
Scalable Inference in SDEs by Direct Matching of the Fokker-Planck-Kolmogorov Equation
Arno Solin
Ella Tamir
Prakhar Verma
25
19
0
29 Oct 2021
Periodic Activation Functions Induce Stationarity
Periodic Activation Functions Induce Stationarity
Lassi Meronen
Martin Trapp
Arno Solin
BDL
25
20
0
26 Oct 2021
GaussED: A Probabilistic Programming Language for Sequential
  Experimental Design
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
40
1
0
15 Oct 2021
Nonnegative spatial factorization
Nonnegative spatial factorization
F. W. Townes
Barbara E. Engelhardt
18
11
0
12 Oct 2021
Contextual Combinatorial Bandits with Changing Action Sets via Gaussian
  Processes
Contextual Combinatorial Bandits with Changing Action Sets via Gaussian Processes
Andi Nika
Sepehr Elahi
Cem Tekin
30
2
0
05 Oct 2021
Dimension Reduction for Data with Heterogeneous Missingness
Dimension Reduction for Data with Heterogeneous Missingness
Yurong Ling
Zijing Liu
Jing-Hao Xue
16
0
0
24 Sep 2021
Risk-Aware Motion Planning in Partially Known Environments
Risk-Aware Motion Planning in Partially Known Environments
Fernando S Barbosa
Bruno Lacerda
Paul Duckworth
Jana Tumova
Nick Hawes
47
25
0
23 Sep 2021
Barely Biased Learning for Gaussian Process Regression
Barely Biased Learning for Gaussian Process Regression
David R. Burt
A. Artemev
Mark van der Wilk
18
0
0
20 Sep 2021
Active Learning in Gaussian Process State Space Model
Active Learning in Gaussian Process State Space Model
H. Yu
Dingling Yao
Christoph Zimmer
Marc Toussaint
D. Nguyen-Tuong
GP
22
4
0
30 Jul 2021
3D Radar Velocity Maps for Uncertain Dynamic Environments
3D Radar Velocity Maps for Uncertain Dynamic Environments
Ransalu Senanayake
Kyle Hatch
J. Zheng
Mykel J. Kochenderfer
11
1
0
23 Jul 2021
Hybrid Bayesian Neural Networks with Functional Probabilistic Layers
Hybrid Bayesian Neural Networks with Functional Probabilistic Layers
Daniel T. Chang
BDL
UQCV
21
1
0
14 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning
Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning
Barna Pásztor
Ilija Bogunovic
Andreas Krause
30
41
0
08 Jul 2021
Previous
123456
Next