ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.08733
  4. Cited By
GPflow: A Gaussian process library using TensorFlow

GPflow: A Gaussian process library using TensorFlow

27 October 2016
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
    GP
ArXivPDFHTML

Papers citing "GPflow: A Gaussian process library using TensorFlow"

50 / 269 papers shown
Title
GPRat: Gaussian Process Regression with Asynchronous Tasks
GPRat: Gaussian Process Regression with Asynchronous Tasks
Maksim Helmann
Alexander Strack
Dirk Pflüger
GP
43
0
0
30 Apr 2025
HiGP: A high-performance Python package for Gaussian Process
Hua Huang
Tianshi Xu
Yuanzhe Xi
Edmond Chow
GP
64
4
0
04 Mar 2025
BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems
BEACON: A Bayesian Optimization Strategy for Novelty Search in Expensive Black-Box Systems
Wei-Ting Tang
Ankush Chakrabarty
J. Paulson
81
0
0
31 Dec 2024
Fast pick-freeze estimation of Sobol' sensitivity maps using basis
  expansions
Fast pick-freeze estimation of Sobol' sensitivity maps using basis expansions
Yuri Sao
Olivier Roustant
Geraldo de Freitas Maciel
67
0
0
11 Dec 2024
Gearing Gaussian process modeling and sequential design towards
  stochastic simulators
Gearing Gaussian process modeling and sequential design towards stochastic simulators
M. Binois
A. Fadikar
Abby Stevens
82
0
0
10 Dec 2024
Fast training of large kernel models with delayed projections
Fast training of large kernel models with delayed projections
Amirhesam Abedsoltan
Siyuan Ma
Parthe Pandit
Mikhail Belkin
71
0
0
25 Nov 2024
Real-time experiment-theory closed-loop interaction for autonomous
  materials science
Real-time experiment-theory closed-loop interaction for autonomous materials science
Haotong Liang
Chuangye Wang
Heshan Yu
Dylan Kirsch
Rohit K. Pant
A. McDannald
A. Kusne
Ji-Cheng Zhao
Ichiro Takeuchi
24
0
0
22 Oct 2024
Global Optimization of Gaussian Process Acquisition Functions Using a
  Piecewise-Linear Kernel Approximation
Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation
Yilin Xie
Shiqiang Zhang
J. Paulson
Calvin Tsay
33
5
0
22 Oct 2024
Modelling 1/f Noise in TRNGs via Fractional Brownian Motion
Modelling 1/f Noise in TRNGs via Fractional Brownian Motion
Maciej Skorski
21
1
0
18 Oct 2024
Non-stationary and Sparsely-correlated Multi-output Gaussian Process
  with Spike-and-Slab Prior
Non-stationary and Sparsely-correlated Multi-output Gaussian Process with Spike-and-Slab Prior
Wang Xinming
Li Yongxiang
Yue Xiaowei
Wu Jianguo
26
0
0
05 Sep 2024
Regularized Multi-output Gaussian Convolution Process with Domain
  Adaptation
Regularized Multi-output Gaussian Convolution Process with Domain Adaptation
Wang Xinming
Wang Chao
Song Xuan
Kirby Levi
Wu Jianguo
24
7
0
04 Sep 2024
Fully Bayesian Differential Gaussian Processes through Stochastic
  Differential Equations
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Jian Xu
Zhiqi Lin
Min Chen
Junmei Yang
Delu Zeng
John Paisley
40
0
0
12 Aug 2024
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel
  Precision Matrices
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel Precision Matrices
Frida Viset
Anton Kullberg
Frederiek Wesel
Arno Solin
45
0
0
05 Aug 2024
The GeometricKernels Package: Heat and Matérn Kernels for Geometric
  Learning on Manifolds, Meshes, and Graphs
The GeometricKernels Package: Heat and Matérn Kernels for Geometric Learning on Manifolds, Meshes, and Graphs
P. Mostowsky
Vincent Dutordoir
I. Azangulov
Noémie Jaquier
Michael John Hutchinson
Aditya Ravuri
Leonel Rozo
Alexander Terenin
Viacheslav Borovitskiy
40
5
0
10 Jul 2024
Visual-Geometry GP-based Navigable Space for Autonomous Navigation
Visual-Geometry GP-based Navigable Space for Autonomous Navigation
Mahmoud Ali
Durgkant Pushp
Zheng Chen
Lantao Liu
52
0
0
09 Jul 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and
  Sequential Monte Carlo
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
37
0
0
07 Jun 2024
A survey and benchmark of high-dimensional Bayesian optimization of
  discrete sequences
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences
Miguel González Duque
Richard Michael
Simon Bartels
Yevgen Zainchkovskyy
Søren Hauberg
Wouter Boomsma
49
4
0
07 Jun 2024
Efficient modeling of sub-kilometer surface wind with Gaussian processes
  and neural networks
Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks
Francesco Zanetta
D. Nerini
Matteo Buzzi
Henry Moss
29
0
0
21 May 2024
Multi-fidelity Gaussian process surrogate modeling for regression
  problems in physics
Multi-fidelity Gaussian process surrogate modeling for regression problems in physics
Kislaya Ravi
Vladyslav Fediukov
Felix Dietrich
T. Neckel
Fabian Buse
Michael Bergmann
H. Bungartz
AI4CE
39
6
0
18 Apr 2024
Deep Gaussian Covariance Network with Trajectory Sampling for
  Data-Efficient Policy Search
Deep Gaussian Covariance Network with Trajectory Sampling for Data-Efficient Policy Search
Can Bogoclu
Robert Vosshall
K. Cremanns
Dirk Roos
BDL
25
1
0
23 Mar 2024
Epsilon-Greedy Thompson Sampling to Bayesian Optimization
Epsilon-Greedy Thompson Sampling to Bayesian Optimization
Bach Do
Taiwo A. Adebiyi
Ruda Zhang
44
4
0
01 Mar 2024
Transfer Learning Bayesian Optimization to Design Competitor DNA
  Molecules for Use in Diagnostic Assays
Transfer Learning Bayesian Optimization to Design Competitor DNA Molecules for Use in Diagnostic Assays
Ruby Sedgwick
John P. Goertz
Molly M. Stevens
Ruth Misener
Mark van der Wilk
BDL
35
0
0
27 Feb 2024
Stopping Bayesian Optimization with Probabilistic Regret Bounds
Stopping Bayesian Optimization with Probabilistic Regret Bounds
James T. Wilson
41
4
0
26 Feb 2024
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library
  for Gaussian Processes and Variational Inference
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference
G. Edenhofer
Philipp Frank
Jakob Roth
R. Leike
Massin Guerdi
L. Scheel-Platz
M. Guardiani
Vincent Eberle
M. Westerkamp
T. Ensslin
35
9
0
26 Feb 2024
Autonomous Mapless Navigation on Uneven Terrains
Autonomous Mapless Navigation on Uneven Terrains
Hassan Jardali
Mahmoud Ali
Lantao Liu
21
4
0
21 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian
  Processes
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
18
1
0
15 Feb 2024
Product-Level Try-on: Characteristics-preserving Try-on with Realistic
  Clothes Shading and Wrinkles
Product-Level Try-on: Characteristics-preserving Try-on with Realistic Clothes Shading and Wrinkles
Yanlong Zang
Han Yang
Jiaxu Miao
Yi Yang
DiffM
27
1
0
20 Jan 2024
PG-LBO: Enhancing High-Dimensional Bayesian Optimization with
  Pseudo-Label and Gaussian Process Guidance
PG-LBO: Enhancing High-Dimensional Bayesian Optimization with Pseudo-Label and Gaussian Process Guidance
Taicai Chen
Yue Duan
Dong Li
Lei Qi
Yinghuan Shi
Yang Gao
BDL
DRL
37
5
0
28 Dec 2023
On the Nystrom Approximation for Preconditioning in Kernel Machines
On the Nystrom Approximation for Preconditioning in Kernel Machines
Amirhesam Abedsoltan
Parthe Pandit
Luis Rademacher
Misha Belkin
29
3
0
06 Dec 2023
Constrained Bayesian Optimization Under Partial Observations: Balanced
  Improvements and Provable Convergence
Constrained Bayesian Optimization Under Partial Observations: Balanced Improvements and Provable Convergence
Shengbo Wang
Ke Li
18
11
0
06 Dec 2023
Gaussian Processes for Monitoring Air-Quality in Kampala
Gaussian Processes for Monitoring Air-Quality in Kampala
Clara Stoddart
Lauren Shrack
Richard Sserunjogi
Usman Abdul-Ganiy
Engineer Bainomugisha
Deo Okure
Ruth Misener
Jose Pablo Folch
Ruby Sedgwick
22
1
0
28 Nov 2023
Learning material synthesis-process-structure-property relationship by
  data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function
  Learning
Learning material synthesis-process-structure-property relationship by data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function Learning
A. Kusne
A. McDannald
Brian L. DeCost
23
2
0
10 Nov 2023
deform: An R Package for Nonstationary Spatial Gaussian Process Models
  by Deformations and Dimension Expansion
deform: An R Package for Nonstationary Spatial Gaussian Process Models by Deformations and Dimension Expansion
Benjamin D. Youngman
21
0
0
09 Nov 2023
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
28
10
0
01 Nov 2023
Large-Scale Gaussian Processes via Alternating Projection
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Haydn Thomas Jones
Geoff Pleiss
Jacob R. Gardner
48
8
0
26 Oct 2023
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process
  Regression
Trigonometric Quadrature Fourier Features for Scalable Gaussian Process Regression
Kevin Li
Max Balakirsky
Simon Mak
27
2
0
23 Oct 2023
Thin and Deep Gaussian Processes
Thin and Deep Gaussian Processes
Daniel Augusto R. M. A. de Souza
Alexander Nikitin
S. T. John
Magnus Ross
Mauricio A. Alvarez
M. Deisenroth
Joao P. P. Gomes
Diego Mesquita
C. L. C. Mattos
28
5
0
17 Oct 2023
Pointwise uncertainty quantification for sparse variational Gaussian
  process regression with a Brownian motion prior
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
24
4
0
29 Sep 2023
A Unifying Variational Framework for Gaussian Process Motion Planning
A Unifying Variational Framework for Gaussian Process Motion Planning
Lucas Cosier
Rares Iordan
Sicelukwanda Zwane
Giovanni Franzese
James T. Wilson
M. Deisenroth
Alexander Terenin
Yasemin Bekiroglu
3DV
32
4
0
02 Sep 2023
Integrated Variational Fourier Features for Fast Spatial Modelling with
  Gaussian Processes
Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
Talay M Cheema
C. Rasmussen
GP
33
2
0
27 Aug 2023
Gaussian Process Regression for Maximum Entropy Distribution
Gaussian Process Regression for Maximum Entropy Distribution
Mohsen Sadr
M. Torrilhon
M. H. Gorji
GP
14
17
0
11 Aug 2023
Inferring epidemic dynamics using Gaussian process emulation of
  agent-based simulations
Inferring epidemic dynamics using Gaussian process emulation of agent-based simulations
Abdulrahman A. Ahmed
M. Amin Rahimian
Mark Roberts
11
3
0
22 Jul 2023
GP-Frontier for Local Mapless Navigation
GP-Frontier for Local Mapless Navigation
Mahmoud Ali
Lantao Liu
18
11
0
21 Jul 2023
GP-guided MPPI for Efficient Navigation in Complex Unknown Cluttered
  Environments
GP-guided MPPI for Efficient Navigation in Complex Unknown Cluttered Environments
Ihab S. Mohamed
Mahmoud Ali
Lantao Liu
29
15
0
08 Jul 2023
Amortized Inference for Gaussian Process Hyperparameters of Structured
  Kernels
Amortized Inference for Gaussian Process Hyperparameters of Structured Kernels
M. Bitzer
Mona Meister
Christoph Zimmer
30
9
0
16 Jun 2023
Framework and Benchmarks for Combinatorial and Mixed-variable Bayesian
  Optimization
Framework and Benchmarks for Combinatorial and Mixed-variable Bayesian Optimization
Kamil Dreczkowski
Antoine Grosnit
Haitham Bou-Ammar
26
7
0
16 Jun 2023
Temporal Causal Mediation through a Point Process: Direct and Indirect
  Effects of Healthcare Interventions
Temporal Causal Mediation through a Point Process: Direct and Indirect Effects of Healthcare Interventions
Caglar Hizli
S. T. John
A. Juuti
Tuure Saarinen
Kirsi Pietiläinen
Pekka Marttinen
CML
37
1
0
16 Jun 2023
Long-Term Autonomous Ocean Monitoring with Streaming Samples
Long-Term Autonomous Ocean Monitoring with Streaming Samples
Weizhe (Wesley) Chen
Lantao Liu
28
3
0
11 Jun 2023
Improving Hyperparameter Learning under Approximate Inference in
  Gaussian Process Models
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Rui Li
S. T. John
Arno Solin
BDL
22
3
0
07 Jun 2023
Spherical Inducing Features for Orthogonally-Decoupled Gaussian
  Processes
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Louis C. Tiao
Vincent Dutordoir
Victor Picheny
BDL
17
0
0
27 Apr 2023
123456
Next