Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.06351
Cited By
Geometric MCMC for Infinite-Dimensional Inverse Problems
20 June 2016
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometric MCMC for Infinite-Dimensional Inverse Problems"
50 / 70 papers shown
Title
Non-parametric Inference for Diffusion Processes: A Computational Approach via Bayesian Inversion for PDEs
Maximilian Kruse
Sebastian Krumscheid
26
0
0
04 Nov 2024
Sacred and Profane: from the Involutive Theory of MCMC to Helpful Hamiltonian Hacks
N. Glatt-Holtz
Andrew J. Holbrook
J. Krometis
Cecilia F. Mondaini
Ami D. Sheth
28
0
0
22 Oct 2024
Valid Credible Ellipsoids for Linear Functionals by a Renormalized Bernstein-von Mises Theorem
Gustav Rømer
19
0
0
17 Sep 2024
Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear Inverse Problems
Lorenzo Baldassari
Ali Siahkoohi
Josselin Garnier
K. Sølna
Maarten V. de Hoop
DiffM
31
1
0
24 May 2024
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
51
1
0
21 May 2024
Statistical algorithms for low-frequency diffusion data: A PDE approach
Matteo Giordano
Sven Wang
33
2
0
02 May 2024
Bayesian Nonparametric Inference in McKean-Vlasov models
Richard Nickl
G. Pavliotis
Kolyan Ray
21
5
0
25 Apr 2024
Diffeomorphic Measure Matching with Kernels for Generative Modeling
Biraj Pandey
Bamdad Hosseini
Pau Batlle
H. Owhadi
20
3
0
12 Feb 2024
SMC Is All You Need: Parallel Strong Scaling
Xin Liang
J. Lukens
Sanjaya Lohani
Brian T. Kirby
T. Searles
Kody J. H. Law
20
2
0
09 Feb 2024
Deep Gaussian Process Priors for Bayesian Inference in Nonlinear Inverse Problems
Kweku Abraham
Neil Deo
20
4
0
21 Dec 2023
Scaling Up Bayesian Neural Networks with Neural Networks
Zahra Moslemi
Yang Meng
Shiwei Lan
B. Shahbaba
BDL
22
1
0
19 Dec 2023
Conditional Optimal Transport on Function Spaces
Bamdad Hosseini
Alexander W. Hsu
Amirhossein Taghvaei
OT
34
14
0
09 Nov 2023
A Risk Management Perspective on Statistical Estimation and Generalized Variational Inference
Aurya Javeed
D. Kouri
T. Surowiec
15
2
0
26 Oct 2023
On posterior consistency of data assimilation with Gaussian process priors: the 2D Navier-Stokes equations
Richard Nickl
E. Titi
11
7
0
16 Jul 2023
Spatiotemporal Besov Priors for Bayesian Inverse Problems
Shiwei Lan
M. Pasha
Shuyi Li
Weining Shen
16
5
0
28 Jun 2023
Principal Feature Detection via
Φ
Φ
Φ
-Sobolev Inequalities
Matthew T.C. Li
Youssef Marzouk
O. Zahm
24
8
0
10 May 2023
Reversibility of elliptical slice sampling revisited
Mareike Hasenpflug
Viacheslav Natarovskii
Daniel Rudolf
19
5
0
06 Jan 2023
Consistent inference for diffusions from low frequency measurements
Richard Nickl
27
5
0
24 Oct 2022
Bayesian Learning via Q-Exponential Process
Shuyi Li
Michael O'Connor
Shiwei Lan
21
2
0
14 Oct 2022
Adaptive inference over Besov spaces in the white noise model using
p
p
p
-exponential priors
S. Agapiou
Aimilia Savva
13
2
0
13 Sep 2022
Semi-supervised Invertible Neural Operators for Bayesian Inverse Problems
Sebastian Kaltenbach
P. Perdikaris
P. Koutsourelakis
10
23
0
06 Sep 2022
On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions
Afonso S. Bandeira
Antoine Maillard
Richard Nickl
Sven Wang
12
8
0
05 Sep 2022
Chilled Sampling for Uncertainty Quantification: A Motivation From A Meteorological Inverse Problem
P. Héas
Frédéric Cérou
Mathias Rousset
9
3
0
07 Jul 2022
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
26
39
0
21 Jun 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
16
2
0
07 May 2022
A gradient-free subspace-adjusting ensemble sampler for infinite-dimensional Bayesian inverse problems
Matthew M. Dunlop
G. Stadler
BDL
8
6
0
22 Feb 2022
Multilevel Delayed Acceptance MCMC
Mikkel B. Lykkegaard
T. Dodwell
C. Fox
Grigorios Mingas
Robert Scheichl
16
14
0
08 Feb 2022
Lagrangian Manifold Monte Carlo on Monge Patches
M. Hartmann
Mark Girolami
Arto Klami
16
10
0
01 Feb 2022
Dimension-independent Markov chain Monte Carlo on the sphere
H. Lie
Daniel Rudolf
Björn Sprungk
T. Sullivan
19
6
0
22 Dec 2021
Bayesian neural network priors for edge-preserving inversion
Chen Li
Matthew M. Dunlop
G. Stadler
13
12
0
20 Dec 2021
Laplace priors and spatial inhomogeneity in Bayesian inverse problems
S. Agapiou
Sven Wang
15
13
0
10 Dec 2021
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of Data with Complex Predictive Models under Uncertainty
Ki-tae Kim
Umberto Villa
M. Parno
Youssef Marzouk
Omar Ghattas
N. Petra
17
18
0
01 Dec 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
26
22
0
22 Oct 2021
Statistical Finite Elements via Langevin Dynamics
Ömer Deniz Akyildiz
Connor Duffin
Sotirios Sabanis
Mark Girolami
23
11
0
21 Oct 2021
Consistency of Bayesian inference with Gaussian process priors for a parabolic inverse problem
Hanne Kekkonen
11
11
0
24 Mar 2021
Data-Free Likelihood-Informed Dimension Reduction of Bayesian Inverse Problems
Tiangang Cui
O. Zahm
15
22
0
26 Feb 2021
Projected Wasserstein gradient descent for high-dimensional Bayesian inference
Yifei Wang
Peng Chen
Wuchen Li
11
25
0
12 Feb 2021
Novel Deep neural networks for solving Bayesian statistical inverse
Harbir Antil
H. Elman
Akwum Onwunta
Deepanshu Verma
BDL
16
17
0
08 Feb 2021
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
B. Shahbaba
UQCV
BDL
17
16
0
11 Jan 2021
A unified performance analysis of likelihood-informed subspace methods
Tiangang Cui
X. Tong
17
26
0
07 Jan 2021
Trace-class Gaussian priors for Bayesian learning of neural networks with MCMC
Torben Sell
Sumeetpal S. Singh
BDL
15
5
0
20 Dec 2020
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
20
10
0
09 Nov 2020
Ensemble sampler for infinite-dimensional inverse problems
Jeremie Coullon
R. Webber
11
10
0
28 Oct 2020
Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors
F. Monard
Richard Nickl
G. Paternain
17
35
0
31 Jul 2020
Multilevel Hierarchical Decomposition of Finite Element White Noise with Application to Multilevel Markov Chain Monte Carlo
Hillary R. Fairbanks
U. Villa
P. Vassilevski
21
7
0
28 Jul 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
16
9
0
28 Jun 2020
Multimodal Bayesian Registration of Noisy Functions using Hamiltonian Monte Carlo
J. D. Tucker
L. Shand
K. Chowdhary
13
7
0
29 May 2020
Stability of Gibbs Posteriors from the Wasserstein Loss for Bayesian Full Waveform Inversion
Matthew M. Dunlop
Yunan Yang
17
12
0
07 Apr 2020
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and Infinite Dimensions
N. Glatt-Holtz
Cecilia F. Mondaini
21
10
0
17 Mar 2020
Generalized Parallel Tempering on Bayesian Inverse Problems
J. Latz
Juan P. Madrigal-Cianci
F. Nobile
Raúl Tempone
11
16
0
06 Mar 2020
1
2
Next