46
0

Non-parametric Inference for Diffusion Processes: A Computational Approach via Bayesian Inversion for PDEs

Abstract

In this paper, we present a theoretical and computational workflow for the non-parametric Bayesian inference of drift and diffusion functions of autonomous diffusion processes. We base the inference on the partial differential equations arising from the infinitesimal generator of the underlying process. Following a problem formulation in the infinite-dimensional setting, we discuss optimization- and sampling-based solution methods. As preliminary results, we showcase the inference of a single-scale, as well as a multiscale process from trajectory data.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.