ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.06351
  4. Cited By
Geometric MCMC for Infinite-Dimensional Inverse Problems

Geometric MCMC for Infinite-Dimensional Inverse Problems

20 June 2016
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
ArXivPDFHTML

Papers citing "Geometric MCMC for Infinite-Dimensional Inverse Problems"

50 / 70 papers shown
Title
Non-parametric Inference for Diffusion Processes: A Computational
  Approach via Bayesian Inversion for PDEs
Non-parametric Inference for Diffusion Processes: A Computational Approach via Bayesian Inversion for PDEs
Maximilian Kruse
Sebastian Krumscheid
26
0
0
04 Nov 2024
Sacred and Profane: from the Involutive Theory of MCMC to Helpful
  Hamiltonian Hacks
Sacred and Profane: from the Involutive Theory of MCMC to Helpful Hamiltonian Hacks
N. Glatt-Holtz
Andrew J. Holbrook
J. Krometis
Cecilia F. Mondaini
Ami D. Sheth
28
0
0
22 Oct 2024
Valid Credible Ellipsoids for Linear Functionals by a Renormalized
  Bernstein-von Mises Theorem
Valid Credible Ellipsoids for Linear Functionals by a Renormalized Bernstein-von Mises Theorem
Gustav Rømer
19
0
0
17 Sep 2024
Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear
  Inverse Problems
Taming Score-Based Diffusion Priors for Infinite-Dimensional Nonlinear Inverse Problems
Lorenzo Baldassari
Ali Siahkoohi
Josselin Garnier
K. Sølna
Maarten V. de Hoop
DiffM
31
1
0
24 May 2024
Gaussian Measures Conditioned on Nonlinear Observations: Consistency,
  MAP Estimators, and Simulation
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
49
1
0
21 May 2024
Statistical algorithms for low-frequency diffusion data: A PDE approach
Statistical algorithms for low-frequency diffusion data: A PDE approach
Matteo Giordano
Sven Wang
33
2
0
02 May 2024
Bayesian Nonparametric Inference in McKean-Vlasov models
Bayesian Nonparametric Inference in McKean-Vlasov models
Richard Nickl
G. Pavliotis
Kolyan Ray
19
5
0
25 Apr 2024
Diffeomorphic Measure Matching with Kernels for Generative Modeling
Diffeomorphic Measure Matching with Kernels for Generative Modeling
Biraj Pandey
Bamdad Hosseini
Pau Batlle
H. Owhadi
18
3
0
12 Feb 2024
SMC Is All You Need: Parallel Strong Scaling
SMC Is All You Need: Parallel Strong Scaling
Xin Liang
J. Lukens
Sanjaya Lohani
Brian T. Kirby
T. Searles
Kody J. H. Law
20
2
0
09 Feb 2024
Deep Gaussian Process Priors for Bayesian Inference in Nonlinear Inverse
  Problems
Deep Gaussian Process Priors for Bayesian Inference in Nonlinear Inverse Problems
Kweku Abraham
Neil Deo
20
4
0
21 Dec 2023
Scaling Up Bayesian Neural Networks with Neural Networks
Scaling Up Bayesian Neural Networks with Neural Networks
Zahra Moslemi
Yang Meng
Shiwei Lan
B. Shahbaba
BDL
22
1
0
19 Dec 2023
Conditional Optimal Transport on Function Spaces
Conditional Optimal Transport on Function Spaces
Bamdad Hosseini
Alexander W. Hsu
Amirhossein Taghvaei
OT
34
14
0
09 Nov 2023
A Risk Management Perspective on Statistical Estimation and Generalized
  Variational Inference
A Risk Management Perspective on Statistical Estimation and Generalized Variational Inference
Aurya Javeed
D. Kouri
T. Surowiec
15
2
0
26 Oct 2023
On posterior consistency of data assimilation with Gaussian process
  priors: the 2D Navier-Stokes equations
On posterior consistency of data assimilation with Gaussian process priors: the 2D Navier-Stokes equations
Richard Nickl
E. Titi
11
7
0
16 Jul 2023
Spatiotemporal Besov Priors for Bayesian Inverse Problems
Spatiotemporal Besov Priors for Bayesian Inverse Problems
Shiwei Lan
M. Pasha
Shuyi Li
Weining Shen
16
5
0
28 Jun 2023
Principal Feature Detection via $Φ$-Sobolev Inequalities
Principal Feature Detection via ΦΦΦ-Sobolev Inequalities
Matthew T.C. Li
Youssef Marzouk
O. Zahm
24
8
0
10 May 2023
Reversibility of elliptical slice sampling revisited
Reversibility of elliptical slice sampling revisited
Mareike Hasenpflug
Viacheslav Natarovskii
Daniel Rudolf
19
5
0
06 Jan 2023
Consistent inference for diffusions from low frequency measurements
Consistent inference for diffusions from low frequency measurements
Richard Nickl
25
5
0
24 Oct 2022
Bayesian Learning via Q-Exponential Process
Bayesian Learning via Q-Exponential Process
Shuyi Li
Michael O'Connor
Shiwei Lan
19
2
0
14 Oct 2022
Adaptive inference over Besov spaces in the white noise model using
  $p$-exponential priors
Adaptive inference over Besov spaces in the white noise model using ppp-exponential priors
S. Agapiou
Aimilia Savva
11
2
0
13 Sep 2022
Semi-supervised Invertible Neural Operators for Bayesian Inverse
  Problems
Semi-supervised Invertible Neural Operators for Bayesian Inverse Problems
Sebastian Kaltenbach
P. Perdikaris
P. Koutsourelakis
10
23
0
06 Sep 2022
On free energy barriers in Gaussian priors and failure of cold start
  MCMC for high-dimensional unimodal distributions
On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions
Afonso S. Bandeira
Antoine Maillard
Richard Nickl
Sven Wang
12
8
0
05 Sep 2022
Chilled Sampling for Uncertainty Quantification: A Motivation From A
  Meteorological Inverse Problem
Chilled Sampling for Uncertainty Quantification: A Motivation From A Meteorological Inverse Problem
P. Héas
Frédéric Cérou
Mathias Rousset
9
3
0
07 Jul 2022
Derivative-Informed Neural Operator: An Efficient Framework for
  High-Dimensional Parametric Derivative Learning
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
24
39
0
21 Jun 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net
  Kernels: Comparison to Bayesian Neural Networks, Application to Topology
  Optimization
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
16
2
0
07 May 2022
A gradient-free subspace-adjusting ensemble sampler for
  infinite-dimensional Bayesian inverse problems
A gradient-free subspace-adjusting ensemble sampler for infinite-dimensional Bayesian inverse problems
Matthew M. Dunlop
G. Stadler
BDL
8
6
0
22 Feb 2022
Multilevel Delayed Acceptance MCMC
Multilevel Delayed Acceptance MCMC
Mikkel B. Lykkegaard
T. Dodwell
C. Fox
Grigorios Mingas
Robert Scheichl
14
14
0
08 Feb 2022
Lagrangian Manifold Monte Carlo on Monge Patches
Lagrangian Manifold Monte Carlo on Monge Patches
M. Hartmann
Mark Girolami
Arto Klami
16
10
0
01 Feb 2022
Dimension-independent Markov chain Monte Carlo on the sphere
Dimension-independent Markov chain Monte Carlo on the sphere
H. Lie
Daniel Rudolf
Björn Sprungk
T. Sullivan
19
6
0
22 Dec 2021
Bayesian neural network priors for edge-preserving inversion
Bayesian neural network priors for edge-preserving inversion
Chen Li
Matthew M. Dunlop
G. Stadler
13
12
0
20 Dec 2021
Laplace priors and spatial inhomogeneity in Bayesian inverse problems
Laplace priors and spatial inhomogeneity in Bayesian inverse problems
S. Agapiou
Sven Wang
15
13
0
10 Dec 2021
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of
  Data with Complex Predictive Models under Uncertainty
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of Data with Complex Predictive Models under Uncertainty
Ki-tae Kim
Umberto Villa
M. Parno
Youssef Marzouk
Omar Ghattas
N. Petra
17
18
0
01 Dec 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
24
22
0
22 Oct 2021
Statistical Finite Elements via Langevin Dynamics
Statistical Finite Elements via Langevin Dynamics
Ömer Deniz Akyildiz
Connor Duffin
Sotirios Sabanis
Mark Girolami
23
11
0
21 Oct 2021
Consistency of Bayesian inference with Gaussian process priors for a
  parabolic inverse problem
Consistency of Bayesian inference with Gaussian process priors for a parabolic inverse problem
Hanne Kekkonen
11
11
0
24 Mar 2021
Data-Free Likelihood-Informed Dimension Reduction of Bayesian Inverse
  Problems
Data-Free Likelihood-Informed Dimension Reduction of Bayesian Inverse Problems
Tiangang Cui
O. Zahm
15
22
0
26 Feb 2021
Projected Wasserstein gradient descent for high-dimensional Bayesian
  inference
Projected Wasserstein gradient descent for high-dimensional Bayesian inference
Yifei Wang
Peng Chen
Wuchen Li
11
25
0
12 Feb 2021
Novel Deep neural networks for solving Bayesian statistical inverse
Novel Deep neural networks for solving Bayesian statistical inverse
Harbir Antil
H. Elman
Akwum Onwunta
Deepanshu Verma
BDL
16
17
0
08 Feb 2021
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems
  using Deep Neural Networks
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
B. Shahbaba
UQCV
BDL
17
16
0
11 Jan 2021
A unified performance analysis of likelihood-informed subspace methods
A unified performance analysis of likelihood-informed subspace methods
Tiangang Cui
X. Tong
17
26
0
07 Jan 2021
Trace-class Gaussian priors for Bayesian learning of neural networks
  with MCMC
Trace-class Gaussian priors for Bayesian learning of neural networks with MCMC
Torben Sell
Sumeetpal S. Singh
BDL
15
5
0
20 Dec 2020
On the accept-reject mechanism for Metropolis-Hastings algorithms
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
20
10
0
09 Nov 2020
Ensemble sampler for infinite-dimensional inverse problems
Ensemble sampler for infinite-dimensional inverse problems
Jeremie Coullon
R. Webber
11
10
0
28 Oct 2020
Statistical guarantees for Bayesian uncertainty quantification in
  non-linear inverse problems with Gaussian process priors
Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors
F. Monard
Richard Nickl
G. Paternain
17
35
0
31 Jul 2020
Multilevel Hierarchical Decomposition of Finite Element White Noise with
  Application to Multilevel Markov Chain Monte Carlo
Multilevel Hierarchical Decomposition of Finite Element White Noise with Application to Multilevel Markov Chain Monte Carlo
Hillary R. Fairbanks
U. Villa
P. Vassilevski
19
7
0
28 Jul 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
14
9
0
28 Jun 2020
Multimodal Bayesian Registration of Noisy Functions using Hamiltonian
  Monte Carlo
Multimodal Bayesian Registration of Noisy Functions using Hamiltonian Monte Carlo
J. D. Tucker
L. Shand
K. Chowdhary
11
7
0
29 May 2020
Stability of Gibbs Posteriors from the Wasserstein Loss for Bayesian
  Full Waveform Inversion
Stability of Gibbs Posteriors from the Wasserstein Loss for Bayesian Full Waveform Inversion
Matthew M. Dunlop
Yunan Yang
17
12
0
07 Apr 2020
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and
  Infinite Dimensions
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and Infinite Dimensions
N. Glatt-Holtz
Cecilia F. Mondaini
18
10
0
17 Mar 2020
Generalized Parallel Tempering on Bayesian Inverse Problems
Generalized Parallel Tempering on Bayesian Inverse Problems
J. Latz
Juan P. Madrigal-Cianci
F. Nobile
Raúl Tempone
11
16
0
06 Mar 2020
12
Next