On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions

Abstract
We exhibit examples of high-dimensional unimodal posterior distributions arising in non-linear regression models with Gaussian process priors for which MCMC methods can take an exponential run-time to enter the regions where the bulk of the posterior measure concentrates. Our results apply to worst-case initialised (`cold start') algorithms that are local in the sense that their step-sizes cannot be too large on average. The counter-examples hold for general MCMC schemes based on gradient or random walk steps, and the theory is illustrated for Metropolis-Hastings adjusted methods such as pCN and MALA.
View on arXivComments on this paper