ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.06351
  4. Cited By
Geometric MCMC for Infinite-Dimensional Inverse Problems

Geometric MCMC for Infinite-Dimensional Inverse Problems

20 June 2016
A. Beskos
Mark Girolami
Shiwei Lan
P. Farrell
Andrew M. Stuart
ArXivPDFHTML

Papers citing "Geometric MCMC for Infinite-Dimensional Inverse Problems"

20 / 70 papers shown
Title
Dimension-free convergence rates for gradient Langevin dynamics in RKHS
Dimension-free convergence rates for gradient Langevin dynamics in RKHS
Boris Muzellec
Kanji Sato
Mathurin Massias
Taiji Suzuki
11
12
0
29 Feb 2020
Projected Stein Variational Gradient Descent
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
50
68
0
09 Feb 2020
MCMC for a hyperbolic Bayesian inverse problem in traffic flow modelling
MCMC for a hyperbolic Bayesian inverse problem in traffic flow modelling
Jeremie Coullon
Y. Pokern
14
1
0
07 Jan 2020
Manifold Markov chain Monte Carlo methods for Bayesian inference in
  diffusion models
Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models
Matthew M. Graham
Alexandre Hoang Thiery
A. Beskos
17
15
0
06 Dec 2019
Solving Bayesian Inverse Problems via Variational Autoencoders
Solving Bayesian Inverse Problems via Variational Autoencoders
Hwan Goh
Sheroze Sheriffdeen
J. Wittmer
T. Bui-Thanh
BDL
14
38
0
05 Dec 2019
Sampling of Bayesian posteriors with a non-Gaussian probabilistic
  learning on manifolds from a small dataset
Sampling of Bayesian posteriors with a non-Gaussian probabilistic learning on manifolds from a small dataset
Christian Soize
R. Ghanem
19
18
0
28 Oct 2019
Consistency of Bayesian inference with Gaussian process priors in an
  elliptic inverse problem
Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem
M. Giordano
Richard Nickl
29
57
0
16 Oct 2019
Deep Markov Chain Monte Carlo
Deep Markov Chain Monte Carlo
B. Shahbaba
L. M. Lomeli
T. Chen
Shiwei Lan
BDL
13
8
0
13 Oct 2019
hIPPYlib: An Extensible Software Framework for Large-Scale Inverse
  Problems Governed by PDEs; Part I: Deterministic Inversion and Linearized
  Bayesian Inference
hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs; Part I: Deterministic Inversion and Linearized Bayesian Inference
Umberto Villa
N. Petra
Omar Ghattas
8
61
0
09 Sep 2019
Scalable optimization-based sampling on function space
Scalable optimization-based sampling on function space
Johnathan M. Bardsley
Tiangang Cui
Youssef Marzouk
Zheng Wang
27
17
0
03 Mar 2019
Bernstein-von Mises theorems and uncertainty quantification for linear
  inverse problems
Bernstein-von Mises theorems and uncertainty quantification for linear inverse problems
M. Giordano
Hanne Kekkonen
69
19
0
09 Nov 2018
Adaptive Dimension Reduction to Accelerate Infinite-Dimensional
  Geometric Markov Chain Monte Carlo
Adaptive Dimension Reduction to Accelerate Infinite-Dimensional Geometric Markov Chain Monte Carlo
Shiwei Lan
21
10
0
15 Jul 2018
Multi-core parallel tempering Bayeslands for basin and landscape
  evolution
Multi-core parallel tempering Bayeslands for basin and landscape evolution
Rohitash Chandra
R. Müller
Danial Azam
R. Deo
N. Butterworth
T. Salles
Sally Cripps
14
15
0
23 Jun 2018
Two Metropolis-Hastings algorithms for posterior measures with
  non-Gaussian priors in infinite dimensions
Two Metropolis-Hastings algorithms for posterior measures with non-Gaussian priors in infinite dimensions
Bamdad Hosseini
17
13
0
20 Apr 2018
Dimension-Robust MCMC in Bayesian Inverse Problems
Dimension-Robust MCMC in Bayesian Inverse Problems
Victor Chen
Matthew M. Dunlop
O. Papaspiliopoulos
Andrew M. Stuart
17
36
0
09 Mar 2018
Earth System Modeling 2.0: A Blueprint for Models That Learn From
  Observations and Targeted High-Resolution Simulations
Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations
T. Schneider
Shiwei Lan
Andrew M. Stuart
J. Teixeira
AI4Cl
19
314
0
31 Aug 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
15
31
0
08 May 2017
Multilevel Sequential Monte Carlo with Dimension-Independent
  Likelihood-Informed Proposals
Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals
A. Beskos
Ajay Jasra
K. Law
Youssef Marzouk
Yan Zhou
20
40
0
15 Mar 2017
Bayesian Probabilistic Numerical Methods
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
16
164
0
13 Feb 2017
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
Previous
12