ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04934
  4. Cited By
Improving Variational Inference with Inverse Autoregressive Flow

Improving Variational Inference with Inverse Autoregressive Flow

15 June 2016
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
    BDL
    DRL
ArXivPDFHTML

Papers citing "Improving Variational Inference with Inverse Autoregressive Flow"

50 / 355 papers shown
Title
Variational Diffusion Models
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
55
1,059
0
01 Jul 2021
A Survey on Neural Speech Synthesis
A Survey on Neural Speech Synthesis
Xu Tan
Tao Qin
Frank Soong
Tie-Yan Liu
AI4TS
18
352
0
29 Jun 2021
Sparse Flows: Pruning Continuous-depth Models
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
26
16
0
24 Jun 2021
Black Box Variational Bayesian Model Averaging
Black Box Variational Bayesian Model Averaging
Vojtech Kejzlar
Shrijita Bhattacharya
Mookyong Son
T. Maiti
BDL
24
3
0
23 Jun 2021
Real-time gravitational-wave science with neural posterior estimation
Real-time gravitational-wave science with neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
16
130
0
23 Jun 2021
Improving Performance of Seen and Unseen Speech Style Transfer in
  End-to-end Neural TTS
Improving Performance of Seen and Unseen Speech Style Transfer in End-to-end Neural TTS
Xiaochun An
Frank Soong
Lei Xie
34
9
0
18 Jun 2021
A deep generative model for probabilistic energy forecasting in power
  systems: normalizing flows
A deep generative model for probabilistic energy forecasting in power systems: normalizing flows
Jonathan Dumas
Antoine Wehenkel
Bertrand Cornélusse
Antonio Sutera
AI4TS
24
81
0
17 Jun 2021
Discrete Auto-regressive Variational Attention Models for Text Modeling
Discrete Auto-regressive Variational Attention Models for Text Modeling
Xianghong Fang
Haoli Bai
Jian Li
Zenglin Xu
Michael Lyu
Irwin King
37
3
0
16 Jun 2021
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek Sinha
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
30
118
0
12 Jun 2021
Conditional Variational Autoencoder with Adversarial Learning for
  End-to-End Text-to-Speech
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
Jaehyeon Kim
Jungil Kong
Juhee Son
DRL
51
840
0
11 Jun 2021
Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
16
658
0
10 Jun 2021
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with
  Normalizing Flows
CaloFlow: Fast and Accurate Generation of Calorimeter Showers with Normalizing Flows
Claudius Krause
David Shih
AI4CE
28
81
0
09 Jun 2021
Marginalizable Density Models
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
32
5
0
08 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
MuseMorphose: Full-Song and Fine-Grained Piano Music Style Transfer with
  One Transformer VAE
MuseMorphose: Full-Song and Fine-Grained Piano Music Style Transfer with One Transformer VAE
Shih-Lun Wu
Yi-Hsuan Yang
ViT
22
53
0
10 May 2021
Review of end-to-end speech synthesis technology based on deep learning
Review of end-to-end speech synthesis technology based on deep learning
Zhaoxi Mu
Xinyu Yang
Yizhuo Dong
AuLLM
ALM
26
24
0
20 Apr 2021
Differentially Private Normalizing Flows for Privacy-Preserving Density
  Estimation
Differentially Private Normalizing Flows for Privacy-Preserving Density Estimation
Chris Waites
Rachel Cummings
19
15
0
25 Mar 2021
An Introduction to Deep Generative Modeling
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
22
220
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
480
0
08 Mar 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Trumpets: Injective Flows for Inference and Inverse Problems
Trumpets: Injective Flows for Inference and Inverse Problems
K. Kothari
AmirEhsan Khorashadizadeh
Maarten V. de Hoop
Ivan Dokmanić
TPM
24
50
0
20 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
11
7
0
12 Feb 2021
Neural representation and generation for RNA secondary structures
Neural representation and generation for RNA secondary structures
Zichao Yan
William L. Hamilton
Mathieu Blanchette
40
2
0
01 Feb 2021
Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic
  Resonance Image Synthesis
Dual-cycle Constrained Bijective VAE-GAN For Tagged-to-Cine Magnetic Resonance Image Synthesis
Xiaofeng Liu
Fangxu Xing
Jerry L. Prince
A. Carass
M. Stone
G. El Fakhri
Jonghye Woo
MedIm
9
26
0
14 Jan 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
24
241
0
09 Jan 2021
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
26
1
0
24 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Regularization with Latent Space Virtual Adversarial Training
Regularization with Latent Space Virtual Adversarial Training
Genki Osada
Budrul Ahsan
Revoti Prasad Bora
Takashi Nishide
30
14
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
36
336
0
20 Nov 2020
Solving high-dimensional parameter inference: marginal posterior
  densities & Moment Networks
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
17
38
0
11 Nov 2020
Reducing the Computational Cost of Deep Generative Models with Binary
  Neural Networks
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
23
9
0
26 Oct 2020
Variational Bayesian Unlearning
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
25
121
0
24 Oct 2020
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR
  Parsing
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR Parsing
Chunchuan Lyu
Shay B. Cohen
Ivan Titov
35
11
0
23 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
77
3
0
22 Oct 2020
Hierarchical Autoregressive Modeling for Neural Video Compression
Hierarchical Autoregressive Modeling for Neural Video Compression
Ruihan Yang
Yibo Yang
Joseph Marino
Stephan Mandt
BDL
VGen
109
46
0
19 Oct 2020
Dirichlet Graph Variational Autoencoder
Dirichlet Graph Variational Autoencoder
Jia Li
Tomas Yu
Jiajin Li
Honglei Zhang
Kangfei Zhao
Yu Rong
Hong Cheng
Junzhou Huang
BDL
16
52
0
09 Oct 2020
Improving Sequential Latent Variable Models with Autoregressive Flows
Improving Sequential Latent Variable Models with Autoregressive Flows
Joseph Marino
Lei Chen
Jiawei He
Stephan Mandt
BDL
AI4TS
30
12
0
07 Oct 2020
Variational Disentanglement for Rare Event Modeling
Variational Disentanglement for Rare Event Modeling
Zidi Xiu
Chenyang Tao
M. Gao
Connor Davis
B. Goldstein
Ricardo Henao
CML
DRL
24
6
0
17 Sep 2020
Novel and flexible parameter estimation methods for data-consistent
  inversion in mechanistic modeling
Novel and flexible parameter estimation methods for data-consistent inversion in mechanistic modeling
Timothy Rumbell
Jaimit Parikh
J. Kozloski
V. Gurev
8
5
0
17 Sep 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
47
0
24 Aug 2020
Discrete Point Flow Networks for Efficient Point Cloud Generation
Discrete Point Flow Networks for Efficient Point Cloud Generation
Roman Klokov
Edmond Boyer
Jakob Verbeek
3DPC
18
107
0
20 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
AUTO3D: Novel view synthesis through unsupervisely learned variational
  viewpoint and global 3D representation
AUTO3D: Novel view synthesis through unsupervisely learned variational viewpoint and global 3D representation
Xiaofeng Liu
Tong Che
Yiqun Lu
Chao Yang
Site Li
J. You
3DV
46
21
0
13 Jul 2020
Quasi-Periodic WaveNet: An Autoregressive Raw Waveform Generative Model
  with Pitch-dependent Dilated Convolution Neural Network
Quasi-Periodic WaveNet: An Autoregressive Raw Waveform Generative Model with Pitch-dependent Dilated Convolution Neural Network
Yi-Chiao Wu
Tomoki Hayashi
Patrick Lumban Tobing
Kazuhiro Kobayashi
T. Toda
19
18
0
11 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
19
19
0
10 Jul 2020
Learning Sparse Prototypes for Text Generation
Learning Sparse Prototypes for Text Generation
Junxian He
Taylor Berg-Kirkpatrick
Graham Neubig
19
23
0
29 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep
  learning
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
16
22
0
26 Jun 2020
Learning Physical Graph Representations from Visual Scenes
Learning Physical Graph Representations from Visual Scenes
Daniel M. Bear
Chaofei Fan
Damian Mrowca
Yunzhu Li
S. Alter
...
Jeremy Schwartz
Li Fei-Fei
Jiajun Wu
J. Tenenbaum
Daniel L. K. Yamins
SSL
GNN
SSeg
AI4CE
42
79
0
22 Jun 2020
Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single
  Sample
Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample
Shir Gur
Sagie Benaim
Lior Wolf
VGen
GAN
DRL
12
69
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
16,947
0
19 Jun 2020
Previous
12345678
Next