ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04934
  4. Cited By
Improving Variational Inference with Inverse Autoregressive Flow

Improving Variational Inference with Inverse Autoregressive Flow

15 June 2016
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
    BDL
    DRL
ArXivPDFHTML

Papers citing "Improving Variational Inference with Inverse Autoregressive Flow"

50 / 354 papers shown
Title
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
92
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
25
169
0
16 Jun 2020
A Variational Approach to Privacy and Fairness
A Variational Approach to Privacy and Fairness
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
FaML
DRL
19
25
0
11 Jun 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
33
23
0
10 Jun 2020
Deep generative models for musical audio synthesis
Deep generative models for musical audio synthesis
M. Huzaifah
L. Wyse
19
20
0
10 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
16
32
0
09 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
25
28
0
02 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate
  Distributional Regression
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
35
39
0
29 May 2020
Joint Stochastic Approximation and Its Application to Learning Discrete
  Latent Variable Models
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Flowtron: an Autoregressive Flow-based Generative Network for
  Text-to-Speech Synthesis
Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis
Rafael Valle
Kevin J. Shih
R. Prenger
Bryan Catanzaro
13
119
0
12 May 2020
Invertible Image Rescaling
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
22
234
0
12 May 2020
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Saeid Asgari Taghanaki
Mohammad Havaei
Alex Lamb
Aditya Sanghi
Aram Danielyan
Tonya Custis
DRL
25
7
0
12 May 2020
Multi-band MelGAN: Faster Waveform Generation for High-Quality
  Text-to-Speech
Multi-band MelGAN: Faster Waveform Generation for High-Quality Text-to-Speech
Geng Yang
Shan Yang
Kai-Chun Liu
Peng Fang
Wei Chen
Lei Xie
50
198
0
11 May 2020
Lossy Compression with Distortion Constrained Optimization
Lossy Compression with Distortion Constrained Optimization
T. V. Rozendaal
Guillaume Sautière
Taco S. Cohen
31
13
0
08 May 2020
Crossing Variational Autoencoders for Answer Retrieval
Crossing Variational Autoencoders for Answer Retrieval
W. Yu
Lingfei Wu
Qingkai Zeng
S. Tao
Yu Deng
Meng Jiang
DRL
RALM
OOD
BDL
6
15
0
06 May 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDL
DRL
34
61
0
27 Apr 2020
PatchVAE: Learning Local Latent Codes for Recognition
PatchVAE: Learning Local Latent Codes for Recognition
Kamal Gupta
Saurabh Singh
Abhinav Shrivastava
SSL
DRL
14
20
0
07 Apr 2020
TraDE: Transformers for Density Estimation
TraDE: Transformers for Density Estimation
Rasool Fakoor
Pratik Chaudhari
Jonas W. Mueller
Alex Smola
12
30
0
06 Apr 2020
Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Chunyuan Li
Xiang Gao
Yuan Li
Baolin Peng
Xiujun Li
Yizhe Zhang
Jianfeng Gao
SSL
DRL
32
181
0
05 Apr 2020
Variational Inference with Vine Copulas: An efficient Approach for
  Bayesian Computer Model Calibration
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
16
6
0
28 Mar 2020
FormulaZero: Distributionally Robust Online Adaptation via Offline
  Population Synthesis
FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Aman Sinha
Matthew O'Kelly
Hongrui Zheng
Rahul Mangharam
John C. Duchi
Russ Tedrake
OffRL
66
26
0
09 Mar 2020
The Variational InfoMax Learning Objective
The Variational InfoMax Learning Objective
Vincenzo Crescimanna
Bruce P. Graham
11
0
0
07 Mar 2020
Diverse and Admissible Trajectory Forecasting through Multimodal Context
  Understanding
Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding
Seonguk Park
Gyubok Lee
Manoj Bhat
Jimin Seo
Minseok Kang
Jonathan M Francis
Ashwin R. Jadhav
Paul Pu Liang
Louis-Philippe Morency
136
119
0
06 Mar 2020
Gravitational-wave parameter estimation with autoregressive neural
  network flows
Gravitational-wave parameter estimation with autoregressive neural network flows
Stephen R. Green
C. Simpson
J. Gair
BDL
83
87
0
18 Feb 2020
Balancing reconstruction error and Kullback-Leibler divergence in
  Variational Autoencoders
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
Andrea Asperti
Matteo Trentin
DRL
22
96
0
18 Feb 2020
Deep Gaussian Markov Random Fields
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
14
22
0
18 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Learning Flat Latent Manifolds with VAEs
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
24
39
0
12 Feb 2020
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
  Dynamics
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics
Alexander Tong
Jessie Huang
Guy Wolf
David van Dijk
Smita Krishnaswamy
29
158
0
09 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
61
425
0
26 Jan 2020
Towards GAN Benchmarks Which Require Generalization
Towards GAN Benchmarks Which Require Generalization
Ishaan Gulrajani
Colin Raffel
Luke Metz
24
57
0
10 Jan 2020
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable
  Models
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models
James Townsend
Thomas Bird
Julius Kunze
David Barber
BDL
VLM
13
56
0
20 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Learning Multi-layer Latent Variable Model via Variational Optimization
  of Short Run MCMC for Approximate Inference
Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
Erik Nijkamp
Bo Pang
Tian Han
Linqi Zhou
Song-Chun Zhu
Ying Nian Wu
BDL
DRL
19
2
0
04 Dec 2019
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGe
DRL
19
179
0
06 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
On Investigation of Unsupervised Speech Factorization Based on
  Normalization Flow
On Investigation of Unsupervised Speech Factorization Based on Normalization Flow
Haoran Sun
Yunqi Cai
Lantian Li
Dong Wang
19
1
0
29 Oct 2019
Transferring neural speech waveform synthesizers to musical instrument
  sounds generation
Transferring neural speech waveform synthesizers to musical instrument sounds generation
Yi Zhao
Xin Wang
Lauri Juvela
Junichi Yamagishi
16
16
0
27 Oct 2019
MAVEN: Multi-Agent Variational Exploration
MAVEN: Multi-Agent Variational Exploration
Anuj Mahajan
Tabish Rashid
Mikayel Samvelyan
Shimon Whiteson
DRL
137
355
0
16 Oct 2019
Generative Neural Network based Spectrum Sharing using Linear Sum
  Assignment Problems
Generative Neural Network based Spectrum Sharing using Linear Sum Assignment Problems
A. B. Zaki
J. Huang
Kaishun Wu
B. Elhalawany
17
15
0
12 Oct 2019
FIS-GAN: GAN with Flow-based Importance Sampling
FIS-GAN: GAN with Flow-based Importance Sampling
Shiyu Yi
Donglin Zhan
Wenqing Zhang
Zhengyang Geng
Kang An
Hao Wang
GAN
22
3
0
06 Oct 2019
High Mutual Information in Representation Learning with Symmetric
  Variational Inference
High Mutual Information in Representation Learning with Symmetric Variational Inference
M. Livne
Kevin Swersky
David J. Fleet
SSL
DRL
28
0
0
04 Oct 2019
The Neural Moving Average Model for Scalable Variational Inference of
  State Space Models
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDL
AI4TS
16
6
0
02 Oct 2019
Relaxing Bijectivity Constraints with Continuously Indexed Normalising
  Flows
Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows
R. Cornish
Anthony L. Caterini
George Deligiannidis
Arnaud Doucet
22
2
0
30 Sep 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
21
215
0
30 Sep 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
18
15
0
09 Sep 2019
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
Bohan Li
Junxian He
Graham Neubig
Taylor Berg-Kirkpatrick
Yiming Yang
DRL
11
70
0
02 Sep 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
Conditional Flow Variational Autoencoders for Structured Sequence
  Prediction
Conditional Flow Variational Autoencoders for Structured Sequence Prediction
Apratim Bhattacharyya
M. Hanselmann
Mario Fritz
Bernt Schiele
C. Straehle
BDL
DRL
AI4TS
24
83
0
24 Aug 2019
Previous
12345678
Next