Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 866 papers shown
Title
Stochastic Coded Federated Learning: Theoretical Analysis and Incentive Mechanism Design
Yuchang Sun
Jiawei Shao
Yuyi Mao
Songze Li
Jun Zhang
FedML
91
8
0
08 Nov 2022
RCD-SGD: Resource-Constrained Distributed SGD in Heterogeneous Environment via Submodular Partitioning
Haoze He
Parijat Dube
58
1
0
02 Nov 2022
Convergence analysis of a quasi-Monte Carlo-based deep learning algorithm for solving partial differential equations
Fengjiang Fu
Xiaoqun Wang
36
2
0
28 Oct 2022
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
59
0
0
28 Oct 2022
NeuralSearchX: Serving a Multi-billion-parameter Reranker for Multilingual Metasearch at a Low Cost
Thales Sales Almeida
Thiago Laitz
Joao Seródio
L. Bonifacio
R. Lotufo
Rodrigo Nogueira
53
4
0
26 Oct 2022
Decentralized Stochastic Bilevel Optimization with Improved per-Iteration Complexity
Xuxing Chen
Minhui Huang
Shiqian Ma
Krishnakumar Balasubramanian
92
29
0
23 Oct 2022
A note on diffusion limits for stochastic gradient descent
Alberto Lanconelli
Christopher S. A. Lauria
DiffM
60
1
0
20 Oct 2022
Distributed Distributionally Robust Optimization with Non-Convex Objectives
Yang Jiao
Kai Yang
Dongjin Song
64
12
0
14 Oct 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
90
2
0
12 Oct 2022
Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation Approach
Peng Mi
Li Shen
Tianhe Ren
Yiyi Zhou
Xiaoshuai Sun
Rongrong Ji
Dacheng Tao
AAML
123
71
0
11 Oct 2022
Robust Graph Structure Learning via Multiple Statistical Tests
Yaohua Wang
Fangyi Zhang
Ming Lin
Senzhang Wang
Xiuyu Sun
Rong Jin
69
1
0
08 Oct 2022
Over-the-Air Federated Learning with Privacy Protection via Correlated Additive Perturbations
Jialing Liao
Zheng Chen
Erik G. Larsson
89
13
0
05 Oct 2022
Taming Fat-Tailed ("Heavier-Tailed'' with Potentially Infinite Variance) Noise in Federated Learning
Haibo Yang
Pei-Yuan Qiu
Jia Liu
FedML
74
12
0
03 Oct 2022
Downlink Compression Improves TopK Sparsification
William Zou
H. Sterck
Jun Liu
43
0
0
30 Sep 2022
FG-UAP: Feature-Gathering Universal Adversarial Perturbation
Zhixing Ye
Xinwen Cheng
Xiaolin Huang
AAML
110
11
0
27 Sep 2022
Robust Collaborative Learning with Linear Gradient Overhead
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
John Stephan
FedML
82
16
0
22 Sep 2022
Stability and Generalization Analysis of Gradient Methods for Shallow Neural Networks
Yunwen Lei
Rong Jin
Yiming Ying
MLT
100
19
0
19 Sep 2022
Model-free Subsampling Method Based on Uniform Designs
Mei Zhang
Yongdao Zhou
Zhengze Zhou
Aijun Zhang
54
14
0
08 Sep 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
91
6
0
07 Sep 2022
Cooperative coevolutionary Modified Differential Evolution with Distance-based Selection for Large-Scale Optimization Problems in noisy environments through an automatic Random Grouping
Rui Zhong
M. Munetomo
25
0
0
02 Sep 2022
Versatile Single-Loop Method for Gradient Estimator: First and Second Order Optimality, and its Application to Federated Learning
Kazusato Oko
Shunta Akiyama
Tomoya Murata
Taiji Suzuki
FedML
94
0
0
01 Sep 2022
Flexible Vertical Federated Learning with Heterogeneous Parties
Timothy Castiglia
Shiqiang Wang
S. Patterson
FedML
128
36
0
26 Aug 2022
A simplified convergence theory for Byzantine resilient stochastic gradient descent
Lindon Roberts
E. Smyth
82
3
0
25 Aug 2022
A Graphical Model for Fusing Diverse Microbiome Data
Mehmet Aktukmak
Haonan Zhu
M. Chevrette
Julia Nepper
S. Magesh
J. Handelsman
Alfred Hero
45
2
0
21 Aug 2022
Pandemic Control, Game Theory and Machine Learning
Yao Xuan
R. Balkin
Jiequn Han
Ruimeng Hu
Héctor D. Ceniceros
AI4CE
50
1
0
18 Aug 2022
Detection and Mitigation of Byzantine Attacks in Distributed Training
Konstantinos Konstantinidis
Namrata Vaswani
Aditya Ramamoorthy
AAML
83
0
0
17 Aug 2022
Exponential Concentration in Stochastic Approximation
K. Law
N. Walton
Shan Yang
57
0
0
15 Aug 2022
Adaptive Learning Rates for Faster Stochastic Gradient Methods
Samuel Horváth
Konstantin Mishchenko
Peter Richtárik
ODL
63
9
0
10 Aug 2022
Quantization enabled Privacy Protection in Decentralized Stochastic Optimization
Yongqiang Wang
Tamer Basar
53
48
0
07 Aug 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
89
3
0
05 Aug 2022
SGEM: stochastic gradient with energy and momentum
Hailiang Liu
Xuping Tian
41
4
0
03 Aug 2022
An adjoint-free algorithm for conditional nonlinear optimal perturbations (CNOPs) via sampling
Bin Shi
Guodong Sun
22
5
0
01 Aug 2022
Analyzing Sharpness along GD Trajectory: Progressive Sharpening and Edge of Stability
Z. Li
Zixuan Wang
Jian Li
97
47
0
26 Jul 2022
Approximation Power of Deep Neural Networks: an explanatory mathematical survey
Mohammad Motamed
41
3
0
19 Jul 2022
Is Integer Arithmetic Enough for Deep Learning Training?
Alireza Ghaffari
Marzieh S. Tahaei
Mohammadreza Tayaranian
M. Asgharian
V. Nia
MQ
51
16
0
18 Jul 2022
On uniform-in-time diffusion approximation for stochastic gradient descent
Lei Li
Yuliang Wang
98
4
0
11 Jul 2022
Finite-time High-probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation
Alain Durmus
Eric Moulines
A. Naumov
S. Samsonov
106
25
0
10 Jul 2022
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
Lin Zhang
Shaoshuai Shi
Wei Wang
Yue Liu
70
10
0
30 Jun 2022
Meta-Wrapper: Differentiable Wrapping Operator for User Interest Selection in CTR Prediction
Tianwei Cao
Qianqian Xu
Zhiyong Yang
Qingming Huang
53
7
0
28 Jun 2022
Supervised Learning with General Risk Functionals
Liu Leqi
Audrey Huang
Zachary Chase Lipton
Kamyar Azizzadenesheli
57
5
0
27 Jun 2022
Theoretical analysis of Adam using hyperparameters close to one without Lipschitz smoothness
Hideaki Iiduka
73
5
0
27 Jun 2022
Stochastic Langevin Differential Inclusions with Applications to Machine Learning
F. Difonzo
Vyacheslav Kungurtsev
Jakub Mareˇcek
61
3
0
23 Jun 2022
GACT: Activation Compressed Training for Generic Network Architectures
Xiaoxuan Liu
Lianmin Zheng
Dequan Wang
Yukuo Cen
Weize Chen
...
Zhiyuan Liu
Jie Tang
Joey Gonzalez
Michael W. Mahoney
Alvin Cheung
VLM
GNN
MQ
101
33
0
22 Jun 2022
On the Maximum Hessian Eigenvalue and Generalization
Simran Kaur
Jérémy E. Cohen
Zachary Chase Lipton
115
43
0
21 Jun 2022
A Single-Timescale Analysis For Stochastic Approximation With Multiple Coupled Sequences
Han Shen
Tianyi Chen
110
15
0
21 Jun 2022
A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
54
25
0
21 Jun 2022
Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data
Timothy Castiglia
Anirban Das
Shiqiang Wang
S. Patterson
FedML
72
50
0
16 Jun 2022
Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
70
82
0
16 Jun 2022
On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada
Tyler Chen
Rachel A. Ward
122
19
0
15 Jun 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
134
72
0
14 Jun 2022
Previous
1
2
3
4
5
...
16
17
18
Next