Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,406 papers shown
Title
A Unified Batch Online Learning Framework for Click Prediction
Rishabh K. Iyer
Nimit Acharya
Tanuja Bompada
Denis Xavier Charles
Eren Manavoglu
9
2
0
12 Sep 2018
MotherNets: Rapid Deep Ensemble Learning
Abdul Wasay
Brian Hentschel
Yuze Liao
Sanyuan Chen
Stratos Idreos
8
35
0
12 Sep 2018
MDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object Detection
Wenchi Ma
Yuanwei Wu
Zongbo Wang
Guanghui Wang
ObjD
24
25
0
06 Sep 2018
Compositional Stochastic Average Gradient for Machine Learning and Related Applications
Tsung-Yu Hsieh
Y. El-Manzalawy
Yiwei Sun
Vasant Honavar
15
1
0
04 Sep 2018
Distributed Nonconvex Constrained Optimization over Time-Varying Digraphs
G. Scutari
Ying Sun
39
171
0
04 Sep 2018
Sparsity in Deep Neural Networks - An Empirical Investigation with TensorQuant
D. Loroch
Franz-Josef Pfreundt
Norbert Wehn
J. Keuper
15
5
0
27 Aug 2018
Deep Learning: Computational Aspects
Nicholas G. Polson
Vadim Sokolov
PINN
BDL
AI4CE
8
14
0
26 Aug 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
33
348
0
22 Aug 2018
Experiential Robot Learning with Accelerated Neuroevolution
Ahmed Aly
J. Dugan
13
1
0
16 Aug 2018
Backtracking gradient descent method for general
C
1
C^1
C
1
functions, with applications to Deep Learning
T. Truong
T. H. Nguyen
14
9
0
15 Aug 2018
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization
Xiangyi Chen
Sijia Liu
Ruoyu Sun
Mingyi Hong
14
318
0
08 Aug 2018
Stochastic Gradient Descent with Biased but Consistent Gradient Estimators
Jie Chen
Ronny Luss
19
45
0
31 Jul 2018
Particle Filtering Methods for Stochastic Optimization with Application to Large-Scale Empirical Risk Minimization
Bin Liu
16
10
0
23 Jul 2018
Newton-ADMM: A Distributed GPU-Accelerated Optimizer for Multiclass Classification Problems
Chih-Hao Fang
Sudhir B. Kylasa
Fred Roosta
Michael W. Mahoney
A. Grama
ODL
19
10
0
18 Jul 2018
Training Neural Networks Using Features Replay
Zhouyuan Huo
Bin Gu
Heng-Chiao Huang
17
69
0
12 Jul 2018
Geometric Generalization Based Zero-Shot Learning Dataset Infinite World: Simple Yet Powerful
R. Chidambaram
Michael C. Kampffmeyer
W. Neiswanger
Xiaodan Liang
T. Lachmann
Eric P. Xing
13
0
0
10 Jul 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
50
570
0
04 Jul 2018
Quasi-Monte Carlo Variational Inference
Alexander K. Buchholz
F. Wenzel
Stephan Mandt
BDL
25
58
0
04 Jul 2018
Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations
Jennifer B. Erway
J. Griffin
Roummel F. Marcia
Riadh Omheni
8
24
0
01 Jul 2018
Algorithms for solving optimization problems arising from deep neural net models: smooth problems
Vyacheslav Kungurtsev
Tomás Pevný
18
6
0
30 Jun 2018
Random Shuffling Beats SGD after Finite Epochs
Jeff Z. HaoChen
S. Sra
6
98
0
26 Jun 2018
Pushing the boundaries of parallel Deep Learning -- A practical approach
Paolo Viviani
M. Drocco
Marco Aldinucci
OOD
20
0
0
25 Jun 2018
Como funciona o Deep Learning
M. Ponti
G. B. P. D. Costa
29
13
0
20 Jun 2018
Laplacian Smoothing Gradient Descent
Stanley Osher
Bao Wang
Penghang Yin
Xiyang Luo
Farzin Barekat
Minh Pham
A. Lin
ODL
22
43
0
17 Jun 2018
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors
Atsushi Nitanda
Taiji Suzuki
8
10
0
14 Jun 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
268
0
13 Jun 2018
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
Tengyu Xu
Yi Zhou
Kaiyi Ji
Yingbin Liang
29
19
0
12 Jun 2018
Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis
Thomas George
César Laurent
Xavier Bouthillier
Nicolas Ballas
Pascal Vincent
ODL
29
150
0
11 Jun 2018
Dissipativity Theory for Accelerating Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha Using Semidefinite Programs
Bin Hu
S. Wright
Laurent Lessard
11
20
0
10 Jun 2018
Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data
Shuai Zheng
James T. Kwok
6
9
0
08 Jun 2018
A Finite Time Analysis of Temporal Difference Learning With Linear Function Approximation
Jalaj Bhandari
Daniel Russo
Raghav Singal
18
334
0
06 Jun 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
27
359
0
05 Jun 2018
Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate
Mor Shpigel Nacson
Nathan Srebro
Daniel Soudry
FedML
MLT
32
97
0
05 Jun 2018
Backdrop: Stochastic Backpropagation
Siavash Golkar
Kyle Cranmer
41
2
0
04 Jun 2018
Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
21
50
0
01 Jun 2018
Accelerating Incremental Gradient Optimization with Curvature Information
Hoi-To Wai
Wei Shi
César A. Uribe
A. Nedić
Anna Scaglione
6
12
0
31 May 2018
DeepMiner: Discovering Interpretable Representations for Mammogram Classification and Explanation
Jimmy Wu
Bolei Zhou
D. Peck
S. Hsieh
V. Dialani
Lester W. Mackey
Genevieve Patterson
FAtt
MedIm
20
24
0
31 May 2018
On Consensus-Optimality Trade-offs in Collaborative Deep Learning
Zhanhong Jiang
Aditya Balu
C. Hegde
S. Sarkar
FedML
24
7
0
30 May 2018
Bayesian Learning with Wasserstein Barycenters
Julio D. Backhoff Veraguas
J. Fontbona
Gonzalo Rios
Felipe A. Tobar
20
29
0
28 May 2018
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
6
99
0
25 May 2018
Stochastic algorithms with descent guarantees for ICA
Pierre Ablin
Alexandre Gramfort
J. Cardoso
Francis R. Bach
CML
9
7
0
25 May 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
31
297
0
25 May 2018
A Two-Stage Subspace Trust Region Approach for Deep Neural Network Training
V. Dudar
Giovanni Chierchia
Émilie Chouzenoux
J. Pesquet
V. Semenov
14
5
0
23 May 2018
Predictive Local Smoothness for Stochastic Gradient Methods
Jun Yu Li
Hongfu Liu
Bineng Zhong
Yue Wu
Y. Fu
ODL
6
1
0
23 May 2018
Efficient Stochastic Gradient Descent for Learning with Distributionally Robust Optimization
Soumyadip Ghosh
M. Squillante
Ebisa D. Wollega
OOD
11
10
0
22 May 2018
LMKL-Net: A Fast Localized Multiple Kernel Learning Solver via Deep Neural Networks
Ziming Zhang
ODL
9
1
0
22 May 2018
Stochastic modified equations for the asynchronous stochastic gradient descent
Jing An
Jian-wei Lu
Lexing Ying
21
79
0
21 May 2018
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Xiaoyun Li
Francesco Orabona
40
290
0
21 May 2018
Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization
G. Scutari
Ying Sun
35
61
0
17 May 2018
Decoupled Parallel Backpropagation with Convergence Guarantee
Zhouyuan Huo
Bin Gu
Qian Yang
Heng-Chiao Huang
15
97
0
27 Apr 2018
Previous
1
2
3
...
25
26
27
28
29
Next