Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,410 papers shown
Title
A Machine Learning Framework for Solving High-Dimensional Mean Field Game and Mean Field Control Problems
Lars Ruthotto
Stanley Osher
Wuchen Li
L. Nurbekyan
Samy Wu Fung
AI4CE
41
215
0
04 Dec 2019
Federated Learning with Personalization Layers
Manoj Ghuhan Arivazhagan
V. Aggarwal
Aaditya Kumar Singh
Sunav Choudhary
FedML
44
822
0
02 Dec 2019
Scalable Extreme Deconvolution
James A. Ritchie
Iain Murray
20
1
0
26 Nov 2019
Automatic Differentiable Monte Carlo: Theory and Application
Shi-Xin Zhang
Z. Wan
H. Yao
21
17
0
20 Nov 2019
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
Shaoshuai Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
Xiaowen Chu
24
22
0
20 Nov 2019
On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for Distributed Deep Learning
Aritra Dutta
El Houcine Bergou
A. Abdelmoniem
Chen-Yu Ho
Atal Narayan Sahu
Marco Canini
Panos Kalnis
38
77
0
19 Nov 2019
Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization
Anas Barakat
Pascal Bianchi
23
12
0
18 Nov 2019
Optimal Mini-Batch Size Selection for Fast Gradient Descent
M. Perrone
Haidar Khan
Changhoan Kim
Anastasios Kyrillidis
Jerry Quinn
V. Salapura
26
9
0
15 Nov 2019
Convergence to minima for the continuous version of Backtracking Gradient Descent
T. Truong
11
18
0
11 Nov 2019
Asynchronous Online Federated Learning for Edge Devices with Non-IID Data
Yujing Chen
Yue Ning
Martin Slawski
Huzefa Rangwala
FedML
26
56
0
05 Nov 2019
A Rule for Gradient Estimator Selection, with an Application to Variational Inference
Tomas Geffner
Justin Domke
53
6
0
05 Nov 2019
Persistency of Excitation for Robustness of Neural Networks
Kamil Nar
S. Shankar Sastry
AAML
19
10
0
04 Nov 2019
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
26
267
0
31 Oct 2019
Lsh-sampling Breaks the Computation Chicken-and-egg Loop in Adaptive Stochastic Gradient Estimation
Beidi Chen
Yingchen Xu
Anshumali Shrivastava
23
16
0
30 Oct 2019
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
V. Cadambe
FedML
33
199
0
30 Oct 2019
LeanConvNets: Low-cost Yet Effective Convolutional Neural Networks
Jonathan Ephrath
Moshe Eliasof
Lars Ruthotto
E. Haber
Eran Treister
36
16
0
29 Oct 2019
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels
Angus Dempster
Franccois Petitjean
Geoffrey I. Webb
AI4TS
35
760
0
29 Oct 2019
Non-Gaussianity of Stochastic Gradient Noise
A. Panigrahi
Raghav Somani
Navin Goyal
Praneeth Netrapalli
31
52
0
21 Oct 2019
Sparsification as a Remedy for Staleness in Distributed Asynchronous SGD
Rosa Candela
Giulio Franzese
Maurizio Filippone
Pietro Michiardi
24
1
0
21 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
19
36
0
21 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
30
53
0
21 Oct 2019
A Fast Saddle-Point Dynamical System Approach to Robust Deep Learning
Yasaman Esfandiari
Aditya Balu
K. Ebrahimi
Umesh Vaidya
N. Elia
Soumik Sarkar
OOD
28
3
0
18 Oct 2019
Robust Learning Rate Selection for Stochastic Optimization via Splitting Diagnostic
Matteo Sordello
Niccolò Dalmasso
Hangfeng He
Weijie Su
24
7
0
18 Oct 2019
First-Order Preconditioning via Hypergradient Descent
Theodore H. Moskovitz
Rui Wang
Janice Lan
Sanyam Kapoor
Thomas Miconi
J. Yosinski
Aditya Rawal
AI4CE
39
8
0
18 Oct 2019
Improving the convergence of SGD through adaptive batch sizes
Scott Sievert
Zachary B. Charles
ODL
33
8
0
18 Oct 2019
Error Lower Bounds of Constant Step-size Stochastic Gradient Descent
Zhiyan Ding
Yiding Chen
Qin Li
Xiaojin Zhu
22
4
0
18 Oct 2019
Adaptive Step Sizes in Variance Reduction via Regularization
Bingcong Li
G. Giannakis
14
5
0
15 Oct 2019
Predicting dynamical system evolution with residual neural networks
Artem Chashchin
M. Botchev
Ivan Oseledets
G. Ovchinnikov
AI4TS
AI4CE
9
3
0
11 Oct 2019
Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining
Zhouyuan Huo
Heng-Chiao Huang
FedML
19
5
0
09 Oct 2019
The Complexity of Finding Stationary Points with Stochastic Gradient Descent
Yoel Drori
Shigehito Shimizu
31
64
0
04 Oct 2019
Partial differential equation regularization for supervised machine learning
Jillian R. Fisher
35
2
0
03 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
25
200
0
01 Oct 2019
Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning
Jérôme Bolte
Edouard Pauwels
13
126
0
23 Sep 2019
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
22
445
0
23 Sep 2019
Human Position Detection & Tracking with On-robot Time-of-Flight Laser Ranging Sensors
Sarthak Arora
Shitij Kumar
F. Sahin
11
2
0
21 Sep 2019
From Server-Based to Client-Based Machine Learning: A Comprehensive Survey
Renjie Gu
Chaoyue Niu
Fan Wu
Guihai Chen
Chun Hu
Chengfei Lyu
Zhihua Wu
33
25
0
18 Sep 2019
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
27
11
0
15 Sep 2019
Ouroboros: On Accelerating Training of Transformer-Based Language Models
Qian Yang
Zhouyuan Huo
Wenlin Wang
Heng-Chiao Huang
Lawrence Carin
33
9
0
14 Sep 2019
Shapley Interpretation and Activation in Neural Networks
Yadong Li
Xin Cui
TDI
FAtt
LLMSV
25
3
0
13 Sep 2019
Lightweight Task Offloading Exploiting MPI Wait Times for Parallel Adaptive Mesh Refinement
Philipp Samfass
T. Weinzierl
D. E. Charrier
M. Bader
18
2
0
13 Sep 2019
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
30
20
0
11 Sep 2019
Efficient Continual Learning in Neural Networks with Embedding Regularization
Jary Pomponi
Simone Scardapane
Vincenzo Lomonaco
A. Uncini
CLL
36
41
0
09 Sep 2019
Communication-Censored Distributed Stochastic Gradient Descent
Weiyu Li
Tianyi Chen
Liping Li
Zhaoxian Wu
Qing Ling
25
17
0
09 Sep 2019
Distributed Deep Learning with Event-Triggered Communication
Jemin George
Prudhvi K. Gurram
16
16
0
08 Sep 2019
Distributed Training of Embeddings using Graph Analytics
G. Gill
Roshan Dathathri
Saeed Maleki
Madan Musuvathi
Todd Mytkowicz
Olli Saarikivi The University of Texas at Austin
GNN
15
1
0
08 Sep 2019
Decentralized Stochastic Gradient Tracking for Non-convex Empirical Risk Minimization
Jiaqi Zhang
Keyou You
17
18
0
06 Sep 2019
Deep Convolutional Networks in System Identification
Carl R. Andersson
Antônio H. Ribeiro
K. Tiels
Niklas Wahlström
Thomas B. Schon
27
48
0
04 Sep 2019
LCA: Loss Change Allocation for Neural Network Training
Janice Lan
Rosanne Liu
Hattie Zhou
J. Yosinski
21
24
0
03 Sep 2019
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
31
21
0
03 Sep 2019
Linear Convergence of Adaptive Stochastic Gradient Descent
Yuege Xie
Xiaoxia Wu
Rachel A. Ward
16
44
0
28 Aug 2019
Previous
1
2
3
...
21
22
23
...
27
28
29
Next