ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00709
  4. Cited By
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

2 June 2016
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
    GAN
ArXiv (abs)PDFHTML

Papers citing "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization"

50 / 904 papers shown
Title
Training GANs with Centripetal Acceleration
Training GANs with Centripetal Acceleration
Wei Peng
Yuhong Dai
Hui Zhang
Lizhi Cheng
GAN
84
43
0
24 Feb 2019
2-Wasserstein Approximation via Restricted Convex Potentials with
  Application to Improved Training for GANs
2-Wasserstein Approximation via Restricted Convex Potentials with Application to Improved Training for GANs
Amirhossein Taghvaei
Amin Jalali
89
44
0
19 Feb 2019
Label-Removed Generative Adversarial Networks Incorporating with K-Means
Label-Removed Generative Adversarial Networks Incorporating with K-Means
Ce Wang
Zhangling Chen
Kun Shang
GAN
33
25
0
19 Feb 2019
Information Losses in Neural Classifiers from Sampling
Information Losses in Neural Classifiers from Sampling
Brandon Foggo
N. Yu
Jie Shi
Yuanqi Gao
63
7
0
15 Feb 2019
Lipschitz Generative Adversarial Nets
Lipschitz Generative Adversarial Nets
Zhiming Zhou
Jiadong Liang
Yuxuan Song
Lantao Yu
Hongwei Wang
Weinan Zhang
Yong Yu
Zhihua Zhang
GAN
106
78
0
15 Feb 2019
Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach
Rethinking Generative Mode Coverage: A Pointwise Guaranteed Approach
Peilin Zhong
Yuchen Mo
Chang Xiao
Pengyu Chen
Changxi Zheng
53
5
0
13 Feb 2019
Biadversarial Variational Autoencoder
Biadversarial Variational Autoencoder
Arnaud Fickinger
GANBDLDRL
23
0
0
09 Feb 2019
Cost-Effective Incentive Allocation via Structured Counterfactual
  Inference
Cost-Effective Incentive Allocation via Structured Counterfactual Inference
Romain Lopez
Chenchen Li
X. Yan
Junwu Xiong
Michael I. Jordan
Yuan Qi
Le Song
OffRL
98
17
0
07 Feb 2019
Adversarial Networks and Autoencoders: The Primal-Dual Relationship and
  Generalization Bounds
Adversarial Networks and Autoencoders: The Primal-Dual Relationship and Generalization Bounds
Hisham Husain
Richard Nock
Robert C. Williamson
GANDRL
57
3
0
03 Feb 2019
Normalized Wasserstein Distance for Mixture Distributions with
  Applications in Adversarial Learning and Domain Adaptation
Normalized Wasserstein Distance for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation
Yogesh Balaji
Rama Chellappa
Soheil Feizi
76
49
0
01 Feb 2019
Diversity Regularized Adversarial Learning
Diversity Regularized Adversarial Learning
B. Ayinde
Keishin Nishihama
J. Zurada
GAN
16
1
0
30 Jan 2019
Probability Functional Descent: A Unifying Perspective on GANs,
  Variational Inference, and Reinforcement Learning
Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning
Casey Chu
Jose H. Blanchet
Peter Glynn
GAN
75
26
0
30 Jan 2019
Evaluating Bregman Divergences for Probability Learning from Crowd
Evaluating Bregman Divergences for Probability Learning from Crowd
F. A. Mena
Ricardo Ñanculef
UDUQCV
11
0
0
30 Jan 2019
Progressive Augmentation of GANs
Progressive Augmentation of GANs
Dan Zhang
Anna Khoreva
64
27
0
29 Jan 2019
Out-of-Sample Testing for GANs
Out-of-Sample Testing for GANs
Pablo Sánchez-Martín
Pablo Martínez Olmos
Fernando Perez-Cruz
60
2
0
28 Jan 2019
Kernel-Guided Training of Implicit Generative Models with Stability
  Guarantees
Kernel-Guided Training of Implicit Generative Models with Stability Guarantees
Arash Mehrjou
Wittawat Jitkrittum
Krikamol Muandet
Bernhard Schölkopf
GAN
37
4
0
26 Jan 2019
On Output Activation Functions for Adversarial Losses: A Theoretical
  Analysis via Variational Divergence Minimization and An Empirical Study on
  MNIST Classification
On Output Activation Functions for Adversarial Losses: A Theoretical Analysis via Variational Divergence Minimization and An Empirical Study on MNIST Classification
Hao-Wen Dong
Yi-Hsuan Yang
AAML
27
0
0
25 Jan 2019
Maximum Entropy Generators for Energy-Based Models
Maximum Entropy Generators for Energy-Based Models
Rithesh Kumar
Sherjil Ozair
Anirudh Goyal
Aaron Courville
Yoshua Bengio
63
113
0
24 Jan 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
128
38
0
24 Jan 2019
Learning Spatial Pyramid Attentive Pooling in Image Synthesis and
  Image-to-Image Translation
Learning Spatial Pyramid Attentive Pooling in Image Synthesis and Image-to-Image Translation
Wei Sun
Tianfu Wu
122
13
0
18 Jan 2019
On Relativistic $f$-Divergences
On Relativistic fff-Divergences
Alexia Jolicoeur-Martineau
53
19
0
08 Jan 2019
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
155
10
0
03 Jan 2019
InstaGAN: Instance-aware Image-to-Image Translation
InstaGAN: Instance-aware Image-to-Image Translation
Sangwoo Mo
Minsu Cho
Jinwoo Shin
102
158
0
28 Dec 2018
Evaluating Generative Adversarial Networks on Explicitly Parameterized
  Distributions
Evaluating Generative Adversarial Networks on Explicitly Parameterized Distributions
S. O'Brien
Matthew Groh
Abhimanyu Dubey
26
2
0
27 Dec 2018
Disentangling Latent Space for VAE by Label Relevant/Irrelevant
  Dimensions
Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions
Zhilin Zheng
Li Sun
CMLCoGeDRL
85
48
0
22 Dec 2018
RankGAN: A Maximum Margin Ranking GAN for Generating Faces
RankGAN: A Maximum Margin Ranking GAN for Generating Faces
Rahul Dey
Felix Juefei Xu
Vishnu Boddeti
Marios Savvides
CVBMGAN
41
22
0
19 Dec 2018
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDLVLM
121
42
0
17 Dec 2018
Latent Dirichlet Allocation in Generative Adversarial Networks
Latent Dirichlet Allocation in Generative Adversarial Networks
Lili Pan
Shen Cheng
Jian-Dong Liu
Yazhou Ren
Zenglin Xu
GAN
45
3
0
17 Dec 2018
A Survey of Unsupervised Deep Domain Adaptation
A Survey of Unsupervised Deep Domain Adaptation
Garrett Wilson
D. Cook
OOD
223
824
0
06 Dec 2018
GAN-EM: GAN based EM learning framework
GAN-EM: GAN based EM learning framework
Wentian Zhao
Shaojie Wang
Zhihuai Xie
Jing Shi
Chenliang Xu
VLMGAN
19
13
0
02 Dec 2018
On the Implicit Assumptions of GANs
On the Implicit Assumptions of GANs
Ke Li
Jitendra Malik
GAN
37
17
0
29 Nov 2018
How does Lipschitz Regularization Influence GAN Training?
How does Lipschitz Regularization Influence GAN Training?
Yipeng Qin
Niloy Mitra
Peter Wonka
AI4CE
71
17
0
23 Nov 2018
Stackelberg GAN: Towards Provable Minimax Equilibrium via
  Multi-Generator Architectures
Stackelberg GAN: Towards Provable Minimax Equilibrium via Multi-Generator Architectures
Hongyang R. Zhang
Susu Xu
Jiantao Jiao
P. Xie
Ruslan Salakhutdinov
Eric Xing
71
23
0
19 Nov 2018
Bayesian Cycle-Consistent Generative Adversarial Networks via
  Marginalizing Latent Sampling
Bayesian Cycle-Consistent Generative Adversarial Networks via Marginalizing Latent Sampling
Haoran You
Yu Cheng
Tianheng Cheng
Chunliang Li
Pan Zhou
GAN
48
3
0
19 Nov 2018
GAN-QP: A Novel GAN Framework without Gradient Vanishing and Lipschitz
  Constraint
GAN-QP: A Novel GAN Framework without Gradient Vanishing and Lipschitz Constraint
Jianlin Su
GAN
35
25
0
18 Nov 2018
An Algorithmic Perspective on Imitation Learning
An Algorithmic Perspective on Imitation Learning
Takayuki Osa
Joni Pajarinen
Gerhard Neumann
J. Andrew Bagnell
Pieter Abbeel
Jan Peters
102
851
0
16 Nov 2018
Deep Knockoffs
Deep Knockoffs
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
86
143
0
16 Nov 2018
A domain agnostic measure for monitoring and evaluating GANs
A domain agnostic measure for monitoring and evaluating GANs
Paulina Grnarova
Kfir Y. Levy
Aurelien Lucchi
Nathanael Perraudin
Ian Goodfellow
Thomas Hofmann
Andreas Krause
EGVM
119
8
0
13 Nov 2018
Learning Segmentation Masks with the Independence Prior
Learning Segmentation Masks with the Independence Prior
Songmin Dai
Xiaoqiang Li
Lu Wang
Pin Wu
Weiqin Tong
Yimin Chen
ISegGAN
64
3
0
12 Nov 2018
Training Generative Adversarial Networks with Weights
Training Generative Adversarial Networks with Weights
Sufeng Duan
D. Paul
M. Fasoulakis
Y. Stylianou
GAN
37
6
0
06 Nov 2018
Kernel Exponential Family Estimation via Doubly Dual Embedding
Kernel Exponential Family Estimation via Doubly Dual Embedding
Heike Adel
H. Dai
Arthur Gretton
Le Song
Dale Schuurmans
Niao He
79
36
0
06 Nov 2018
Improving GAN with neighbors embedding and gradient matching
Improving GAN with neighbors embedding and gradient matching
Ngoc-Trung Tran
Tuan-Anh Bui
Ngai-Man Cheung
GAN
68
16
0
04 Nov 2018
Stochastic Neighbor Embedding under f-divergences
Stochastic Neighbor Embedding under f-divergences
Daniel Jiwoong Im
Nakul Verma
K. Branson
FedML
80
20
0
03 Nov 2018
ATM:Adversarial-neural Topic Model
ATM:Adversarial-neural Topic Model
Rui Wang
Deyu Zhou
Yulan He
BDLGAN
99
92
0
01 Nov 2018
A Convex Duality Framework for GANs
A Convex Duality Framework for GANs
Farzan Farnia
David Tse
GAN
70
63
0
28 Oct 2018
Informative Features for Model Comparison
Informative Features for Model Comparison
Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
Arthur Gretton
70
27
0
27 Oct 2018
Scalable Unbalanced Optimal Transport using Generative Adversarial
  Networks
Scalable Unbalanced Optimal Transport using Generative Adversarial Networks
Karren D. Yang
Caroline Uhler
GANOT
101
76
0
26 Oct 2018
Training Generative Adversarial Networks Via Turing Test
Training Generative Adversarial Networks Via Turing Test
Jianlin Su
GAN
44
5
0
25 Oct 2018
An Adversarial Learning Approach to Medical Image Synthesis for Lesion
  Detection
An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection
Liyan Sun
Jiexiang Wang
Yue Huang
Xinghao Ding
H. Greenspan
John Paisley
GANMedIm
67
109
0
25 Oct 2018
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
83
13
0
16 Oct 2018
Previous
123...131415...171819
Next