ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00709
  4. Cited By
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

2 June 2016
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
    GAN
ArXiv (abs)PDFHTML

Papers citing "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization"

50 / 904 papers shown
Title
SGAN: An Alternative Training of Generative Adversarial Networks
SGAN: An Alternative Training of Generative Adversarial Networks
Tatjana Chavdarova
François Fleuret
GAN
78
57
0
06 Dec 2017
Wasserstein Divergence for GANs
Wasserstein Divergence for GANs
Jiqing Wu
Zhiwu Huang
Janine Thoma
Dinesh Acharya
Luc Van Gool
85
139
0
04 Dec 2017
Spatial PixelCNN: Generating Images from Patches
Spatial PixelCNN: Generating Images from Patches
Nader Akoury
Anh Totti Nguyen
62
4
0
03 Dec 2017
GANGs: Generative Adversarial Network Games
GANGs: Generative Adversarial Network Games
F. Oliehoek
Rahul Savani
Jose Gallego-Posada
Elise van der Pol
E. Jong
R. Groß
GAN
115
28
0
02 Dec 2017
Hybrid VAE: Improving Deep Generative Models using Partial Observations
Hybrid VAE: Improving Deep Generative Models using Partial Observations
Sergey Tulyakov
Andrew Fitzgibbon
Sebastian Nowozin
DRL
76
9
0
30 Nov 2017
Easy High-Dimensional Likelihood-Free Inference
Easy High-Dimensional Likelihood-Free Inference
Vinay Jethava
Devdatt Dubhashi
BDLGAN
310
3
0
29 Nov 2017
Restricting Greed in Training of Generative Adversarial Network
Restricting Greed in Training of Generative Adversarial Network
Haoxuan You
Zhicheng Jiao
Haojun Xu
Jie Li
Ying Wang
Xinbo Gao
GAN
31
2
0
28 Nov 2017
The Perception-Distortion Tradeoff
The Perception-Distortion Tradeoff
Yochai Blau
T. Michaeli
SupR
154
822
0
16 Nov 2017
How Generative Adversarial Networks and Their Variants Work: An Overview
How Generative Adversarial Networks and Their Variants Work: An Overview
Yongjun Hong
Uiwon Hwang
Jaeyoon Yoo
Sungroh Yoon
GAN
133
159
0
16 Nov 2017
TripletGAN: Training Generative Model with Triplet Loss
TripletGAN: Training Generative Model with Triplet Loss
Gongze Cao
Yezhou Yang
Jie Lei
Cheng Jin
Yang Liu
Xiuming Zhang
GAN
59
10
0
14 Nov 2017
Sobolev GAN
Sobolev GAN
Youssef Mroueh
Chun-Liang Li
Tom Sercu
Anant Raj
Yu Cheng
67
117
0
14 Nov 2017
ACtuAL: Actor-Critic Under Adversarial Learning
ACtuAL: Actor-Critic Under Adversarial Learning
Anirudh Goyal
Nan Rosemary Ke
Alex Lamb
R. Devon Hjelm
C. Pal
Joelle Pineau
Yoshua Bengio
GAN
49
9
0
13 Nov 2017
On the Discrimination-Generalization Tradeoff in GANs
On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang
Qiang Liu
Dengyong Zhou
Tao Xu
Xiaodong He
71
104
0
07 Nov 2017
KGAN: How to Break The Minimax Game in GAN
KGAN: How to Break The Minimax Game in GAN
Trung Le
T. Nguyen
Dinh Q. Phung
GAN
52
1
0
06 Nov 2017
Wasserstein Auto-Encoders
Wasserstein Auto-Encoders
Ilya O. Tolstikhin
Olivier Bousquet
Sylvain Gelly
B. Schölkopf
DRL
194
1,058
0
05 Nov 2017
Variational Inference of Disentangled Latent Concepts from Unlabeled
  Observations
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDLDRL
134
523
0
02 Nov 2017
Flexible Prior Distributions for Deep Generative Models
Flexible Prior Distributions for Deep Generative Models
Yannic Kilcher
Aurelien Lucchi
Thomas Hofmann
AI4CE
21
1
0
31 Oct 2017
Implicit Manifold Learning on Generative Adversarial Networks
Implicit Manifold Learning on Generative Adversarial Networks
Kry Yik-Chau Lui
Yanshuai Cao
Maxime Gazeau
Kelvin Shuangjian Zhang
GAN
58
3
0
30 Oct 2017
Understanding GANs: the LQG Setting
Understanding GANs: the LQG Setting
Soheil Feizi
Changho Suh
F. Xia
David Tse
143
63
0
30 Oct 2017
Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At
  Every Step
Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step
W. Fedus
Mihaela Rosca
Balaji Lakshminarayanan
Andrew M. Dai
S. Mohamed
Ian Goodfellow
GAN
95
211
0
23 Oct 2017
Generative Adversarial Networks: An Overview
Generative Adversarial Networks: An Overview
Antonia Creswell
Tom White
Vincent Dumoulin
Kai Arulkumaran
B. Sengupta
Anil A Bharath
GAN
195
3,084
0
19 Oct 2017
A Study of Cross-domain Generative Models applied to Cartoon Series
A Study of Cross-domain Generative Models applied to Cartoon Series
Eman T. Hassan
David J. Crandall
35
0
0
29 Sep 2017
Generative Adversarial Mapping Networks
Generative Adversarial Mapping Networks
Jianbo Guo
Guangxiang Zhu
Jian Li
GAN
35
3
0
28 Sep 2017
Generative Adversarial Networks with Inverse Transformation Unit
Generative Adversarial Networks with Inverse Transformation Unit
Zhifeng Kong
Shuo Ding
GAN
34
0
0
27 Sep 2017
On the regularization of Wasserstein GANs
On the regularization of Wasserstein GANs
Henning Petzka
Asja Fischer
Denis Lukovnikov
GAN
63
213
0
26 Sep 2017
Statistical Parametric Speech Synthesis Incorporating Generative
  Adversarial Networks
Statistical Parametric Speech Synthesis Incorporating Generative Adversarial Networks
Yuki Saito
Shinnosuke Takamichi
Hiroshi Saruwatari
92
200
0
23 Sep 2017
Dual Discriminator Generative Adversarial Nets
Dual Discriminator Generative Adversarial Nets
T. Nguyen
Trung Le
H. Vu
Dinh Q. Phung
GAN
79
312
0
12 Sep 2017
Learning Graph Topological Features via GAN
Learning Graph Topological Features via GAN
Weiyi Liu
Hal Cooper
Min Hwan Oh
Fucai Yu
Pin-Yu Chen
Toyotaro Suzumura
Guangmin Hu
GANAI4CE
142
25
0
11 Sep 2017
Mirror Descent Search and its Acceleration
Mirror Descent Search and its Acceleration
Megumi Miyashita
S. Yano
T. Kondo
28
7
0
08 Sep 2017
Linking Generative Adversarial Learning and Binary Classification
Linking Generative Adversarial Learning and Binary Classification
Akshay Balsubramani
AI4CEGAN
21
0
0
05 Sep 2017
Learning Implicit Generative Models Using Differentiable Graph Tests
Learning Implicit Generative Models Using Differentiable Graph Tests
Josip Djolonga
Andreas Krause
58
8
0
04 Sep 2017
PassGAN: A Deep Learning Approach for Password Guessing
PassGAN: A Deep Learning Approach for Password Guessing
Briland Hitaj
Paolo Gasti
G. Ateniese
Fernando Perez-Cruz
GAN
98
250
0
01 Sep 2017
Geometric Enclosing Networks
Geometric Enclosing Networks
Trung Le
H. Vu
T. Nguyen
Dinh Q. Phung
59
9
0
16 Aug 2017
GANs for Biological Image Synthesis
GANs for Biological Image Synthesis
A. Osokin
A. Chessel
R. Carazo-Salas
F. Vaggi
GAN
76
105
0
15 Aug 2017
Parametric Adversarial Divergences are Good Losses for Generative
  Modeling
Parametric Adversarial Divergences are Good Losses for Generative Modeling
Gabriel Huang
Hugo Berard
Ahmed Touati
Gauthier Gidel
Pascal Vincent
Simon Lacoste-Julien
GAN
65
1
0
08 Aug 2017
Probabilistic Generative Adversarial Networks
Probabilistic Generative Adversarial Networks
Hamid Eghbalzadeh
Gerhard Widmer
GAN
55
8
0
06 Aug 2017
Inception Score, Label Smoothing, Gradient Vanishing and -log(D(x)) Alternative
Zhiming Zhou
Weinan Zhang
Jun Wang
85
19
0
05 Aug 2017
Generator Reversal
Generator Reversal
Yannic Kilcher
Aurelien Lucchi
Thomas Hofmann
AI4CE
47
2
0
28 Jul 2017
Linear Discriminant Generative Adversarial Networks
Linear Discriminant Generative Adversarial Networks
Zhun Sun
Mete Ozay
Takayuki Okatani
GAN
50
1
0
25 Jul 2017
RKL: a general, invariant Bayes solution for Neyman-Scott
RKL: a general, invariant Bayes solution for Neyman-Scott
M. Brand
18
0
0
20 Jul 2017
Can GAN Learn Topological Features of a Graph?
Can GAN Learn Topological Features of a Graph?
Weiyi Liu
Pin-Yu Chen
H. Cooper
Min Hwan Oh
S. Yeung
Toyotaro Suzumura
61
7
0
19 Jul 2017
f-GANs in an Information Geometric Nutshell
f-GANs in an Information Geometric Nutshell
Richard Nock
Zac Cranko
A. Menon
Zhuang Li
Robert C. Williamson
92
27
0
14 Jul 2017
Stable Distribution Alignment Using the Dual of the Adversarial Distance
Stable Distribution Alignment Using the Dual of the Adversarial Distance
Ben Usman
Kate Saenko
Brian Kulis
73
3
0
13 Jul 2017
Learning Deep Energy Models: Contrastive Divergence vs. Amortized MLE
Learning Deep Energy Models: Contrastive Divergence vs. Amortized MLE
Qiang Liu
Dilin Wang
78
23
0
04 Jul 2017
Variance Regularizing Adversarial Learning
Karan Grewal
R. Devon Hjelm
Yoshua Bengio
GANAAML
45
7
0
02 Jul 2017
Dualing GANs
Dualing GANs
Yujia Li
Alex Schwing
Kuan-Chieh Wang
R. Zemel
GAN
67
20
0
19 Jun 2017
Bayesian Conditional Generative Adverserial Networks
Bayesian Conditional Generative Adverserial Networks
Ehsan Abbasnejad
Javen Qinfeng Shi
Iman Abbasnejad
Anton Van Den Hengel
A. Dick
GAN
61
12
0
17 Jun 2017
Adversarial Feature Matching for Text Generation
Adversarial Feature Matching for Text Generation
Yizhe Zhang
Zhe Gan
Kai Fan
Zhi Chen
Ricardo Henao
Dinghan Shen
Lawrence Carin
GAN
102
334
0
12 Jun 2017
An Online Learning Approach to Generative Adversarial Networks
An Online Learning Approach to Generative Adversarial Networks
Paulina Grnarova
Kfir Y. Levy
Aurelien Lucchi
Thomas Hofmann
Andreas Krause
GAN
85
90
0
10 Jun 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
113
447
0
07 Jun 2017
Previous
123...16171819
Next