ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.03517
23
0
v1v2 (latest)

Biadversarial Variational Autoencoder

9 February 2019
Arnaud Fickinger
    GANBDLDRL
ArXiv (abs)PDFHTML
Abstract

In the original version of the Variational Autoencoder, Kingma et al. assume Gaussian distributions for the approximate posterior during the inference and for the output during the generative process. This assumptions are good for computational reasons, e.g. we can easily optimize the parameters of a neural network using the reparametrization trick and the KL divergence between two Gaussians can be computed in closed form. However it results in blurry images due to its difficulty to represent multimodal distributions. We show that using two adversarial networks, we can optimize the parameters without any Gaussian assumptions.

View on arXiv
Comments on this paper