ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.05825
23
1

A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games

12 June 2022
Samuel Sokota
Ryan DÓrazio
J. Zico Kolter
Nicolas Loizou
Marc Lanctot
Ioannis Mitliagkas
Noam Brown
Christian Kroer
ArXivPDFHTML
Abstract

This work studies an algorithm, which we call magnetic mirror descent, that is inspired by mirror descent and the non-Euclidean proximal gradient algorithm. Our contribution is demonstrating the virtues of magnetic mirror descent as both an equilibrium solver and as an approach to reinforcement learning in two-player zero-sum games. These virtues include: 1) Being the first quantal response equilibria solver to achieve linear convergence for extensive-form games with first order feedback; 2) Being the first standard reinforcement learning algorithm to achieve empirically competitive results with CFR in tabular settings; 3) Achieving favorable performance in 3x3 Dark Hex and Phantom Tic-Tac-Toe as a self-play deep reinforcement learning algorithm.

View on arXiv
Comments on this paper