ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.00788
  4. Cited By
Automatic Differentiation Variational Inference

Automatic Differentiation Variational Inference

2 March 2016
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
ArXivPDFHTML

Papers citing "Automatic Differentiation Variational Inference"

50 / 73 papers shown
Title
Multi-resolution Score-Based Variational Graphical Diffusion for Causal Disaster System Modeling and Inference
Multi-resolution Score-Based Variational Graphical Diffusion for Causal Disaster System Modeling and Inference
Xuechun Li
Shan Gao
Susu Xu
DiffM
28
0
0
05 Apr 2025
Robust and highly scalable estimation of directional couplings from time-shifted signals
Robust and highly scalable estimation of directional couplings from time-shifted signals
Luca Ambrogioni
Louis Rouillard
Demian Wassermann
52
0
0
28 Jan 2025
ELBOing Stein: Variational Bayes with Stein Mixture Inference
ELBOing Stein: Variational Bayes with Stein Mixture Inference
Ola Rønning
Eric T. Nalisnick
Christophe Ley
Padhraic Smyth
Thomas Hamelryck
BDL
52
1
0
30 Oct 2024
Batch, match, and patch: low-rank approximations for score-based variational inference
Batch, match, and patch: low-rank approximations for score-based variational inference
Chirag Modi
Diana Cai
Lawrence K. Saul
BDL
37
1
0
29 Oct 2024
Noise-Aware Differentially Private Variational Inference
Noise-Aware Differentially Private Variational Inference
Talal Alrawajfeh
Joonas Jälkö
Antti Honkela
32
0
0
25 Oct 2024
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
31
1
0
14 Oct 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
34
0
0
03 Oct 2024
posteriordb: Testing, Benchmarking and Developing Bayesian Inference
  Algorithms
posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms
Måns Magnusson
Jakob Torgander
Paul-Christian Burkner
Lu Zhang
Bob Carpenter
Aki Vehtari
42
6
0
06 Jul 2024
Particle Semi-Implicit Variational Inference
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
43
3
0
30 Jun 2024
Torchtree: flexible phylogenetic model development and inference using
  PyTorch
Torchtree: flexible phylogenetic model development and inference using PyTorch
Mathieu Fourment
Matthew Macaulay
Christiaan J. Swanepoel
Xiang Ji
M. Suchard
Frederick A Matsen IV
BDL
29
0
0
26 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
50
0
0
03 Jun 2024
Flexible inference in heterogeneous and attributed multilayer networks
Flexible inference in heterogeneous and attributed multilayer networks
Martina Contisciani
Marius Hobbhahn
Eleanor A. Power
Philipp Hennig
Caterina De Bacco
35
1
0
31 May 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
71
2
0
20 Mar 2024
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
43
1
0
26 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
25
2
0
19 Jan 2024
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Burkner
36
2
0
08 Dec 2023
A Knowledge Distillation Approach for Sepsis Outcome Prediction from
  Multivariate Clinical Time Series
A Knowledge Distillation Approach for Sepsis Outcome Prediction from Multivariate Clinical Time Series
Anna Wong
Shu Ge
Nassim Oufattole
Adam Dejl
Megan Su
A. Saeedi
Li-wei H. Lehman
13
1
0
16 Nov 2023
Understanding the impact of numerical solvers on inference for
  differential equation models
Understanding the impact of numerical solvers on inference for differential equation models
R. Creswell
Katherine Shepherd
Ben Lambert
Gary R. Mirams
Chon Lok Lei
S. Tavener
M. Robinson
D. Gavaghan
8
5
0
03 Jul 2023
A Heavy-Tailed Algebra for Probabilistic Programming
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
10
3
0
15 Jun 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Learning battery model parameter dynamics from data with recursive
  Gaussian process regression
Learning battery model parameter dynamics from data with recursive Gaussian process regression
A. Aitio
Dominik Jöst
D. Sauer
David A. Howey
9
5
0
26 Apr 2023
Fast inference of latent space dynamics in huge relational event
  networks
Fast inference of latent space dynamics in huge relational event networks
I. Artico
Ernst C. Wit
BDL
21
1
0
29 Mar 2023
Context-aware robot control using gesture episodes
Context-aware robot control using gesture episodes
Petr Vanc
Jan Kristof Behrens
Karla Stepanova
22
4
0
24 Jan 2023
DPVIm: Differentially Private Variational Inference Improved
DPVIm: Differentially Private Variational Inference Improved
Joonas Jälkö
Lukas Prediger
Antti Honkela
Samuel Kaski
24
3
0
28 Oct 2022
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
L. Riou-Durand
Pavel Sountsov
Jure Vogrinc
C. Margossian
Samuel Power
30
6
0
21 Oct 2022
Autoencoded sparse Bayesian in-IRT factorization, calibration, and
  amortized inference for the Work Disability Functional Assessment Battery
Autoencoded sparse Bayesian in-IRT factorization, calibration, and amortized inference for the Work Disability Functional Assessment Battery
Joshua C. Chang
Carson C. Chow
Julia Porcino
34
1
0
20 Oct 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
J. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
24
8
0
13 Jun 2022
Easy Variational Inference for Categorical Models via an Independent
  Binary Approximation
Easy Variational Inference for Categorical Models via an Independent Binary Approximation
M. Wojnowicz
Shuchin Aeron
Eric L. Miller
M. C. Hughes
8
2
0
31 May 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
30
14
0
11 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard E. Turner
FedML
19
12
0
24 Feb 2022
Cyclical Variational Bayes Monte Carlo for Efficient Multi-Modal
  Posterior Distributions Evaluation
Cyclical Variational Bayes Monte Carlo for Efficient Multi-Modal Posterior Distributions Evaluation
F. Igea
Alice Cicirello
19
8
0
23 Feb 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
27
26
0
20 Dec 2021
Information Field Theory and Artificial Intelligence
Information Field Theory and Artificial Intelligence
T. Ensslin
19
5
0
19 Dec 2021
Epidemia: An R Package for Semi-Mechanistic Bayesian Modelling of
  Infectious Diseases using Point Processes
Epidemia: An R Package for Semi-Mechanistic Bayesian Modelling of Infectious Diseases using Point Processes
Shuhang Tan
Axel Gandy
Swapnil Mishra
Samir Bhatt
Seth Flaxman
H. Juliette T. Unwin
J. Ish-Horowicz
6
9
0
24 Oct 2021
Fitting large mixture models using stochastic component selection
Fitting large mixture models using stochastic component selection
Milan Papez
Tomás Pevný
Václav Smídl
18
0
0
10 Oct 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
43
40
0
09 Aug 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
28
2
0
23 Jun 2021
Geometric variational inference
Geometric variational inference
Philipp Frank
R. Leike
T. Ensslin
14
22
0
21 May 2021
The computational asymptotics of Gaussian variational inference and the
  Laplace approximation
The computational asymptotics of Gaussian variational inference and the Laplace approximation
Zuheng Xu
Trevor Campbell
19
7
0
13 Apr 2021
Scalable Bayesian computation for crossed and nested hierarchical models
Scalable Bayesian computation for crossed and nested hierarchical models
O. Papaspiliopoulos
Timothée Stumpf-Fétizon
Giacomo Zanella
37
10
0
19 Mar 2021
Probabilistic Circuits for Variational Inference in Discrete Graphical
  Models
Probabilistic Circuits for Variational Inference in Discrete Graphical Models
Andy Shih
Stefano Ermon
TPM
13
20
0
22 Oct 2020
Privacy-preserving Data Sharing on Vertically Partitioned Data
Privacy-preserving Data Sharing on Vertically Partitioned Data
Razane Tajeddine
Joonas Jälkö
Samuel Kaski
Antti Honkela
FedML
28
8
0
19 Oct 2020
Tracking disease outbreaks from sparse data with Bayesian inference
Tracking disease outbreaks from sparse data with Bayesian inference
Bryan Wilder
M. Mina
Milind Tambe
18
6
0
12 Sep 2020
Naïve regression requires weaker assumptions than factor models to
  adjust for multiple cause confounding
Naïve regression requires weaker assumptions than factor models to adjust for multiple cause confounding
Justin Grimmer
D. Knox
Brandon M Stewart
CML
6
12
0
24 Jul 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
23
199
0
22 Jun 2020
The role of exchangeability in causal inference
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
29
5
0
02 Jun 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
4
0
0
02 Mar 2020
Joint Distributions for TensorFlow Probability
Joint Distributions for TensorFlow Probability
Dan Piponi
Dave Moore
Joshua V. Dillon
GP
17
16
0
22 Jan 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
17
51
0
31 Dec 2019
12
Next