Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.00788
Cited By
Automatic Differentiation Variational Inference
2 March 2016
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automatic Differentiation Variational Inference"
43 / 93 papers shown
Title
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
8
38
0
18 Jun 2020
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
36
5
0
02 Jun 2020
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
16
6
0
28 Mar 2020
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
11
0
0
02 Mar 2020
Joint Distributions for TensorFlow Probability
Dan Piponi
Dave Moore
Joshua V. Dillon
GP
27
16
0
22 Jan 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
33
51
0
31 Dec 2019
Gradient-based Adaptive Markov Chain Monte Carlo
Michalis K. Titsias
P. Dellaportas
BDL
39
22
0
04 Nov 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Uncertainty Quantification with Generative Models
Vanessa Böhm
F. Lanusse
U. Seljak
30
25
0
22 Oct 2019
Inference of a mesoscopic population model from population spike trains
M. Slawski
A. Longtin
E. Ben-David
27
12
0
03 Oct 2019
Generating Data using Monte Carlo Dropout
Kristian Miok
Dong Nguyen Doan
D. Zaharie
Marko Robnik-Šikonja
SyDa
16
13
0
12 Sep 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
Analyzing the Role of Model Uncertainty for Electronic Health Records
Michael W. Dusenberry
Dustin Tran
Edward Choi
Jonas Kemp
Jeremy Nixon
Ghassen Jerfel
Katherine A. Heller
Andrew M. Dai
10
117
0
10 Jun 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
23
136
0
09 Jun 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
32
8
0
23 May 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
15
1
0
03 Apr 2019
Encoding prior knowledge in the structure of the likelihood
Jakob Knollmüller
T. Ensslin
36
11
0
11 Dec 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Effect Handling for Composable Program Transformations in Edward2
Dave Moore
Maria I. Gorinova
6
15
0
15 Nov 2018
Composing Modeling and Inference Operations with Probabilistic Program Combinators
Eli Sennesh
Adam Scibior
Hao Wu
Jan-Willem van de Meent
TPM
13
1
0
14 Nov 2018
Pymc-learn: Practical Probabilistic Machine Learning in Python
Daniel Emaasit
GP
11
4
0
31 Oct 2018
Robust Bayesian Model Selection for Variable Clustering with the Gaussian Graphical Model
Daniel Andrade
Akiko Takeda
Kenji Fukumizu
29
4
0
15 Jun 2018
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
19
30
0
01 Jun 2018
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
DRL
19
42
0
29 May 2018
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
35
121
0
28 May 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
24
284
0
17 May 2018
Variational Inference In Pachinko Allocation Machines
Akash Srivastava
Charles Sutton
18
6
0
21 Apr 2018
The Description Length of Deep Learning Models
Léonard Blier
Yann Ollivier
32
95
0
20 Feb 2018
Gaussian variational approximation for high-dimensional state space models
M. Quiroz
David J. Nott
Robert Kohn
24
40
0
24 Jan 2018
How well does your sampler really work?
Ryan D. Turner
Brady Neal
27
4
0
16 Dec 2017
Variational Deep Q Network
Yunhao Tang
A. Kucukelbir
BDL
38
10
0
30 Nov 2017
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
46
346
0
28 Nov 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
Frequentist Consistency of Variational Bayes
Yixin Wang
David M. Blei
BDL
28
204
0
09 May 2017
Differentially Private Variational Inference for Non-conjugate Models
Joonas Jälkö
O. Dikmen
Antti Honkela
FedML
21
48
0
27 Oct 2016
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
25
107
0
18 Oct 2016
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
30
76
0
18 May 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
38
4,710
0
04 Jan 2016
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
21
184
0
20 Nov 2015
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
17
335
0
07 Nov 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
54
2,750
0
20 Feb 2015
Previous
1
2