ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.03253
  4. Cited By
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation

A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation

10 February 2016
Qiang Liu
J. Lee
Michael I. Jordan
ArXivPDFHTML

Papers citing "A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation"

50 / 296 papers shown
Title
A Variational View on Bootstrap Ensembles as Bayesian Inference
A Variational View on Bootstrap Ensembles as Bayesian Inference
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
20
1
0
08 Jun 2020
High-Dimensional Non-Parametric Density Estimation in Mixed Smooth
  Sobolev Spaces
High-Dimensional Non-Parametric Density Estimation in Mixed Smooth Sobolev Spaces
Liang Ding
Lu Zou
Wenjia Wang
Shahin Shahrampour
Rui Tuo
4
3
0
05 Jun 2020
Learning Kernel Tests Without Data Splitting
Learning Kernel Tests Without Data Splitting
Jonas M. Kubler
Wittawat Jitkrittum
Bernhard Schölkopf
Krikamol Muandet
8
22
0
03 Jun 2020
Nonparametric Score Estimators
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
24
23
0
20 May 2020
Optimal Thinning of MCMC Output
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
14
45
0
08 May 2020
A Universal Approximation Theorem of Deep Neural Networks for Expressing
  Probability Distributions
A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions
Yulong Lu
Jianfeng Lu
18
19
0
19 Apr 2020
Scalable Approximate Inference and Some Applications
Scalable Approximate Inference and Some Applications
Jun Han
BDL
22
1
0
07 Mar 2020
Batch Stationary Distribution Estimation
Batch Stationary Distribution Estimation
Junfeng Wen
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
14
22
0
02 Mar 2020
Stein Variational Inference for Discrete Distributions
Stein Variational Inference for Discrete Distributions
Jun Han
Fan Ding
Xianglong Liu
Lorenzo Torresani
Jian-wei Peng
Qiang Liu
11
21
0
01 Mar 2020
Testing Goodness of Fit of Conditional Density Models with Kernels
Testing Goodness of Fit of Conditional Density Models with Kernels
Wittawat Jitkrittum
Heishiro Kanagawa
Bernhard Schölkopf
8
27
0
24 Feb 2020
Informative Bayesian Neural Network Priors for Weak Signals
Informative Bayesian Neural Network Priors for Weak Signals
Tianyu Cui
A. Havulinna
Pekka Marttinen
Samuel Kaski
35
9
0
24 Feb 2020
Kernel Conditional Moment Test via Maximum Moment Restriction
Kernel Conditional Moment Test via Maximum Moment Restriction
Krikamol Muandet
Wittawat Jitkrittum
Jonas M. Kubler
17
22
0
21 Feb 2020
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
Ziyu Wang
Shuyu Cheng
Yueru Li
Jun Zhu
Bo Zhang
26
14
0
18 Feb 2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based
  Models without Sampling
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
David Duvenaud
R. Zemel
13
14
0
13 Feb 2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
33
77
0
10 Feb 2020
Kullback-Leibler Divergence-Based Out-of-Distribution Detection with
  Flow-Based Generative Models
Kullback-Leibler Divergence-Based Out-of-Distribution Detection with Flow-Based Generative Models
Yufeng Zhang
Jia Pan
Wanwei Liu
Zhenbang Chen
J. Wang
Zhiming Liu
KenLi Li
H. Wei
OODD
DRL
36
2
0
09 Feb 2020
Semi-Exact Control Functionals From Sard's Method
Semi-Exact Control Functionals From Sard's Method
Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
12
17
0
31 Jan 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
32
27
0
25 Jan 2020
Lifted Hybrid Variational Inference
Lifted Hybrid Variational Inference
Yuqiao Chen
Yibo Yang
S. Natarajan
Nicholas Ruozzi
DRL
10
3
0
08 Jan 2020
Learning Generative Models using Denoising Density Estimators
Learning Generative Models using Denoising Density Estimators
Siavash Bigdeli
Geng Lin
Tiziano Portenier
L. A. Dunbar
Matthias Zwicker
DiffM
26
15
0
08 Jan 2020
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
16
44
0
29 Oct 2019
Kernel Stein Tests for Multiple Model Comparison
Kernel Stein Tests for Multiple Model Comparison
Jen Ning Lim
M. Yamada
Bernhard Schölkopf
Wittawat Jitkrittum
4
13
0
27 Oct 2019
Unsupervised Out-of-Distribution Detection with Batch Normalization
Unsupervised Out-of-Distribution Detection with Batch Normalization
Jiaming Song
Yang Song
Stefano Ermon
OODD
17
22
0
21 Oct 2019
A General Framework for Empirical Bayes Estimation in Discrete Linear
  Exponential Family
A General Framework for Empirical Bayes Estimation in Discrete Linear Exponential Family
Trambak Banerjee
Qiang Liu
Gourab Mukherjee
Wengunag Sun
12
7
0
20 Oct 2019
Estimating Density Models with Truncation Boundaries using Score
  Matching
Estimating Density Models with Truncation Boundaries using Score Matching
Song Liu
Takafumi Kanamori
Daniel J. Williams
15
15
0
09 Oct 2019
Bridging Explicit and Implicit Deep Generative Models via Neural Stein
  Estimators
Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators
Qitian Wu
Rui Gao
H. Zha
GAN
8
5
0
28 Sep 2019
Classification Logit Two-sample Testing by Neural Networks
Classification Logit Two-sample Testing by Neural Networks
Xiuyuan Cheng
A. Cloninger
19
31
0
25 Sep 2019
Goodness-of-fit tests on manifolds
Goodness-of-fit tests on manifolds
A. Shapiro
Yao Xie
Rui Zhang
13
5
0
11 Sep 2019
Minimum $L^q$-distance estimators for non-normalized parametric models
Minimum LqL^qLq-distance estimators for non-normalized parametric models
Steffen Betsch
B. Ebner
B. Klar
16
9
0
30 Aug 2019
Asymptotically Optimal One- and Two-Sample Testing with Kernels
Asymptotically Optimal One- and Two-Sample Testing with Kernels
Shengyu Zhu
Biao Chen
Zhitang Chen
Pengfei Yang
25
7
0
27 Aug 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
20
3,708
0
12 Jul 2019
A Kernel Stein Test for Comparing Latent Variable Models
A Kernel Stein Test for Comparing Latent Variable Models
Heishiro Kanagawa
Wittawat Jitkrittum
Lester W. Mackey
Kenji Fukumizu
A. Gretton
13
12
0
01 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
22
397
0
25 Jun 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
30
90
0
19 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
22
70
0
19 Jun 2019
Detecting Out-of-Distribution Inputs to Deep Generative Models Using
  Typicality
Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Balaji Lakshminarayanan
OODD
14
86
0
07 Jun 2019
Universal Boosting Variational Inference
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
13
30
0
04 Jun 2019
Distributionally Robust Optimization and Generalization in Kernel
  Methods
Distributionally Robust Optimization and Generalization in Kernel Methods
Matthew Staib
Stefanie Jegelka
23
128
0
27 May 2019
A Kernel Loss for Solving the Bellman Equation
A Kernel Loss for Solving the Bellman Equation
Yihao Feng
Lihong Li
Qiang Liu
20
70
0
25 May 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
24
47
0
23 May 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
31
398
0
17 May 2019
Stein Point Markov Chain Monte Carlo
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
A Normality Test for High-dimensional Data based on a Nearest Neighbor
  Approach
A Normality Test for High-dimensional Data based on a Nearest Neighbor Approach
Hao Chen
Yin Xia
18
7
0
10 Apr 2019
Kernelized Complete Conditional Stein Discrepancy
Kernelized Complete Conditional Stein Discrepancy
Raghav Singhal
Xintian Han
S. Lahlou
Rajesh Ranganath
19
7
0
09 Apr 2019
The Born Supremacy: Quantum Advantage and Training of an Ising Born
  Machine
The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine
Brian Coyle
Daniel Mills
V. Danos
E. Kashefi
24
155
0
03 Apr 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
17
235
0
14 Mar 2019
Stochastic Gradient MCMC for Nonlinear State Space Models
Stochastic Gradient MCMC for Nonlinear State Space Models
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
E. Fox
BDL
20
7
0
29 Jan 2019
Projected BNNs: Avoiding weight-space pathologies by learning latent
  representations of neural network weights
Projected BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights
Melanie F. Pradier
Weiwei Pan
Jiayu Yao
S. Ghosh
Finale Doshi-velez
UQCV
BDL
6
9
0
16 Nov 2018
Stein Variational Gradient Descent as Moment Matching
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
12
37
0
27 Oct 2018
Informative Features for Model Comparison
Informative Features for Model Comparison
Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
A. Gretton
17
27
0
27 Oct 2018
Previous
123456
Next