Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.03253
Cited By
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
10 February 2016
Qiang Liu
J. Lee
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation"
50 / 296 papers shown
Title
A Variational View on Bootstrap Ensembles as Bayesian Inference
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
20
1
0
08 Jun 2020
High-Dimensional Non-Parametric Density Estimation in Mixed Smooth Sobolev Spaces
Liang Ding
Lu Zou
Wenjia Wang
Shahin Shahrampour
Rui Tuo
4
3
0
05 Jun 2020
Learning Kernel Tests Without Data Splitting
Jonas M. Kubler
Wittawat Jitkrittum
Bernhard Schölkopf
Krikamol Muandet
8
22
0
03 Jun 2020
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
24
23
0
20 May 2020
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
14
45
0
08 May 2020
A Universal Approximation Theorem of Deep Neural Networks for Expressing Probability Distributions
Yulong Lu
Jianfeng Lu
18
19
0
19 Apr 2020
Scalable Approximate Inference and Some Applications
Jun Han
BDL
22
1
0
07 Mar 2020
Batch Stationary Distribution Estimation
Junfeng Wen
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
14
22
0
02 Mar 2020
Stein Variational Inference for Discrete Distributions
Jun Han
Fan Ding
Xianglong Liu
Lorenzo Torresani
Jian-wei Peng
Qiang Liu
11
21
0
01 Mar 2020
Testing Goodness of Fit of Conditional Density Models with Kernels
Wittawat Jitkrittum
Heishiro Kanagawa
Bernhard Schölkopf
8
27
0
24 Feb 2020
Informative Bayesian Neural Network Priors for Weak Signals
Tianyu Cui
A. Havulinna
Pekka Marttinen
Samuel Kaski
35
9
0
24 Feb 2020
Kernel Conditional Moment Test via Maximum Moment Restriction
Krikamol Muandet
Wittawat Jitkrittum
Jonas M. Kubler
17
22
0
21 Feb 2020
A Wasserstein Minimum Velocity Approach to Learning Unnormalized Models
Ziyu Wang
Shuyu Cheng
Yueru Li
Jun Zhu
Bo Zhang
26
14
0
18 Feb 2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
David Duvenaud
R. Zemel
13
14
0
13 Feb 2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
33
77
0
10 Feb 2020
Kullback-Leibler Divergence-Based Out-of-Distribution Detection with Flow-Based Generative Models
Yufeng Zhang
Jia Pan
Wanwei Liu
Zhenbang Chen
J. Wang
Zhiming Liu
KenLi Li
H. Wei
OODD
DRL
36
2
0
09 Feb 2020
Semi-Exact Control Functionals From Sard's Method
Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
12
17
0
31 Jan 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
32
27
0
25 Jan 2020
Lifted Hybrid Variational Inference
Yuqiao Chen
Yibo Yang
S. Natarajan
Nicholas Ruozzi
DRL
10
3
0
08 Jan 2020
Learning Generative Models using Denoising Density Estimators
Siavash Bigdeli
Geng Lin
Tiziano Portenier
L. A. Dunbar
Matthias Zwicker
DiffM
26
15
0
08 Jan 2020
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
16
44
0
29 Oct 2019
Kernel Stein Tests for Multiple Model Comparison
Jen Ning Lim
M. Yamada
Bernhard Schölkopf
Wittawat Jitkrittum
4
13
0
27 Oct 2019
Unsupervised Out-of-Distribution Detection with Batch Normalization
Jiaming Song
Yang Song
Stefano Ermon
OODD
17
22
0
21 Oct 2019
A General Framework for Empirical Bayes Estimation in Discrete Linear Exponential Family
Trambak Banerjee
Qiang Liu
Gourab Mukherjee
Wengunag Sun
12
7
0
20 Oct 2019
Estimating Density Models with Truncation Boundaries using Score Matching
Song Liu
Takafumi Kanamori
Daniel J. Williams
15
15
0
09 Oct 2019
Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators
Qitian Wu
Rui Gao
H. Zha
GAN
8
5
0
28 Sep 2019
Classification Logit Two-sample Testing by Neural Networks
Xiuyuan Cheng
A. Cloninger
19
31
0
25 Sep 2019
Goodness-of-fit tests on manifolds
A. Shapiro
Yao Xie
Rui Zhang
13
5
0
11 Sep 2019
Minimum
L
q
L^q
L
q
-distance estimators for non-normalized parametric models
Steffen Betsch
B. Ebner
B. Klar
16
9
0
30 Aug 2019
Asymptotically Optimal One- and Two-Sample Testing with Kernels
Shengyu Zhu
Biao Chen
Zhitang Chen
Pengfei Yang
25
7
0
27 Aug 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
20
3,708
0
12 Jul 2019
A Kernel Stein Test for Comparing Latent Variable Models
Heishiro Kanagawa
Wittawat Jitkrittum
Lester W. Mackey
Kenji Fukumizu
A. Gretton
13
12
0
01 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
22
397
0
25 Jun 2019
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
30
90
0
19 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
22
70
0
19 Jun 2019
Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Balaji Lakshminarayanan
OODD
14
86
0
07 Jun 2019
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
13
30
0
04 Jun 2019
Distributionally Robust Optimization and Generalization in Kernel Methods
Matthew Staib
Stefanie Jegelka
23
128
0
27 May 2019
A Kernel Loss for Solving the Bellman Equation
Yihao Feng
Lihong Li
Qiang Liu
20
70
0
25 May 2019
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
24
47
0
23 May 2019
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
31
398
0
17 May 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
A Normality Test for High-dimensional Data based on a Nearest Neighbor Approach
Hao Chen
Yin Xia
18
7
0
10 Apr 2019
Kernelized Complete Conditional Stein Discrepancy
Raghav Singhal
Xintian Han
S. Lahlou
Rajesh Ranganath
19
7
0
09 Apr 2019
The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine
Brian Coyle
Daniel Mills
V. Danos
E. Kashefi
24
155
0
03 Apr 2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
17
235
0
14 Mar 2019
Stochastic Gradient MCMC for Nonlinear State Space Models
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
E. Fox
BDL
20
7
0
29 Jan 2019
Projected BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights
Melanie F. Pradier
Weiwei Pan
Jiayu Yao
S. Ghosh
Finale Doshi-velez
UQCV
BDL
6
9
0
16 Nov 2018
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
12
37
0
27 Oct 2018
Informative Features for Model Comparison
Wittawat Jitkrittum
Heishiro Kanagawa
Patsorn Sangkloy
James Hays
Bernhard Schölkopf
A. Gretton
17
27
0
27 Oct 2018
Previous
1
2
3
4
5
6
Next