ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.09971
17
47

Estimating Convergence of Markov chains with L-Lag Couplings

23 May 2019
N. Biswas
Pierre E. Jacob
Paul Vanetti
ArXivPDFHTML
Abstract

Markov chain Monte Carlo (MCMC) methods generate samples that are asymptotically distributed from a target distribution of interest as the number of iterations goes to infinity. Various theoretical results provide upper bounds on the distance between the target and marginal distribution after a fixed number of iterations. These upper bounds are on a case by case basis and typically involve intractable quantities, which limits their use for practitioners. We introduce L-lag couplings to generate computable, non-asymptotic upper bound estimates for the total variation or the Wasserstein distance of general Markov chains. We apply L-lag couplings to the tasks of (i) determining MCMC burn-in, (ii) comparing different MCMC algorithms with the same target, and (iii) comparing exact and approximate MCMC. Lastly, we (iv) assess the bias of sequential Monte Carlo and self-normalized importance samplers.

View on arXiv
Comments on this paper