Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.03253
Cited By
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
10 February 2016
Qiang Liu
J. Lee
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation"
50 / 296 papers shown
Title
AMNet: An Acoustic Model Network for Enhanced Mandarin Speech Synthesis
Yubing Cao
Yinfeng Yu
Yongming Li
Liejun Wang
24
0
0
12 Apr 2025
Low Stein Discrepancy via Message-Passing Monte Carlo
Nathan Kirk
T. Konstantin Rusch
Jakob Zech
Daniela Rus
35
0
0
27 Mar 2025
Improving Diffusion-based Inverse Algorithms under Few-Step Constraint via Learnable Linear Extrapolation
Jiawei Zhang
Ziyuan Liu
Leon Yan
Gen Li
Yuantao Gu
59
0
0
13 Mar 2025
A Unified View of Optimal Kernel Hypothesis Testing
Antonin Schrab
48
2
0
10 Mar 2025
A Practical Introduction to Kernel Discrepancies: MMD, HSIC & KSD
Antonin Schrab
43
1
0
04 Mar 2025
Correcting Mode Proportion Bias in Generalized Bayesian Inference via a Weighted Kernel Stein Discrepancy
Elham Afzali
Saman Muthukumarana
Liqun Wang
37
0
0
03 Mar 2025
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Stein Discrepancy for Unsupervised Domain Adaptation
Anneke von Seeger
Dongmian Zou
Gilad Lerman
92
0
0
24 Feb 2025
Testing for Causal Fairness
Jiarun Fu
LiZhong Ding
Pengqi Li
Qiuning Wei
Yurong Cheng
Xu Chen
49
0
0
18 Feb 2025
Empirical Bayes Estimation with Side Information: A Nonparametric Integrative Tweedie Approach
Jiajun Luo
Trambak Banerjee
Gourab Mukherjee
Wenguang Sun
70
0
0
17 Feb 2025
LMDM:Latent Molecular Diffusion Model For 3D Molecule Generation
Xiang Chen
DiffM
74
0
0
05 Dec 2024
Denoising Fisher Training For Neural Implicit Samplers
Weijian Luo
Wei Deng
33
0
0
03 Nov 2024
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
68
1
0
31 Oct 2024
FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection
Xinting Liao
Weiming Liu
Pengyang Zhou
Fengyuan Yu
Jiahe Xu
Jun Wang
Wenjie Wang
Chaochao Chen
Xiaolin Zheng
FedML
OODD
46
2
0
15 Oct 2024
Sequential Kernelized Stein Discrepancy
Diego Martinez-Taboada
Aaditya Ramdas
38
0
0
26 Sep 2024
Precise Pick-and-Place using Score-Based Diffusion Networks
Shih-Wei Guo
Tsu-Ching Hsiao
Yu-Lun Liu
Chun-Yi Lee
DiffM
36
1
0
15 Sep 2024
Improved Finite-Particle Convergence Rates for Stein Variational Gradient Descent
Krishnakumar Balasubramanian
Sayan Banerjee
Promit Ghosal
35
2
0
13 Sep 2024
On the Robustness of Kernel Goodness-of-Fit Tests
Xing Liu
F. Briol
OOD
75
4
0
11 Aug 2024
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Xinghao Dong
Chuanqi Chen
Jin-Long Wu
DiffM
AI4CE
41
5
0
06 Aug 2024
Multi-agent Coverage Control: From Discrete Assignments to Continuous Multi-agent Distribution Matching
Solmaz Kia
Sonia Martínez
19
1
0
18 Jul 2024
Optimal Kernel Choice for Score Function-based Causal Discovery
Wenjie Wang
Biwei Huang
Feng Liu
Xinge You
Tongliang Liu
Kun Zhang
Mingming Gong
26
3
0
14 Jul 2024
A Practical Diffusion Path for Sampling
Omar Chehab
Anna Korba
DiffM
34
1
0
20 Jun 2024
Training Diffusion Models with Federated Learning
Matthijs de Goede
Bart Cox
Jérémie Decouchant
FedML
44
8
0
18 Jun 2024
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
41
1
0
12 Jun 2024
CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning
Zeyuan Liu
Kai Yang
Xiu Li
OffRL
42
0
0
11 Jun 2024
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
40
2
0
04 Jun 2024
Applications of Generative AI (GAI) for Mobile and Wireless Networking: A Survey
Thai-Hoc Vu
Senthil Kumar Jagatheesaperumal
Minh-Duong Nguyen
Nguyen Van Huynh
Sunghwan Kim
Viet Quoc Pham
39
8
0
30 May 2024
Kernel Semi-Implicit Variational Inference
Ziheng Cheng
Longlin Yu
Tianyu Xie
Shiyue Zhang
Cheng Zhang
29
2
0
29 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Score-based Generative Priors Guided Model-driven Network for MRI Reconstruction
Xiaoyu Qiao
Weisheng Li
Bin Xiao
Yuping Huang
Lijian Yang
DiffM
36
3
0
05 May 2024
SteinGen: Generating Fidelitous and Diverse Graph Samples
G. Reinert
Wenkai Xu
35
1
0
27 Mar 2024
Data-centric Prediction Explanation via Kernelized Stein Discrepancy
Mahtab Sarvmaili
Hassan Sajjad
Ga Wu
16
1
0
22 Mar 2024
The Blind Normalized Stein Variational Gradient Descent-Based Detection for Intelligent Random Access in Cellular IoT
Xin Zhu
Ahmet Enis Cetin
19
0
0
08 Mar 2024
Batch and match: black-box variational inference with a score-based divergence
Diana Cai
Chirag Modi
Loucas Pillaud-Vivien
C. Margossian
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
28
9
0
22 Feb 2024
Stein Boltzmann Sampling: A Variational Approach for Global Optimization
Gaetan Serré
Argyris Kalogeratos
Nicolas Vayatis
OT
19
1
0
07 Feb 2024
SteinDreamer: Variance Reduction for Text-to-3D Score Distillation via Stein Identity
Peihao Wang
Zhiwen Fan
Dejia Xu
Dilin Wang
Sreyas Mohan
...
Rakesh Ranjan
Yilei Li
Qiang Liu
Zhangyang Wang
Vikas Chandra
32
21
0
31 Dec 2023
Exact Consistency Tests for Gaussian Mixture Filters using Normalized Deviation Squared Statistics
Nisar Ahmed
Luke Burks
Kailah Cabral
Alyssa Bekai Rose
12
2
0
29 Dec 2023
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
24
5
0
27 Dec 2023
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
37
4
0
26 Dec 2023
Stein Coverage: a Variational Inference Approach to Distribution-matching Multisensor Deployment
Donipolo Ghimire
Solmaz S. Kia
20
2
0
12 Dec 2023
Stein Variational Belief Propagation for Multi-Robot Coordination
Jana Pavlasek
J. Mah
Ruihan Xu
Odest Chadwicke Jenkins
Fabio Ramos
13
2
0
28 Nov 2023
A Survey of Emerging Applications of Diffusion Probabilistic Models in MRI
Yuheng Fan
Hanxi Liao
Shiqi Huang
Yimin Luo
Huazhu Fu
Haikun Qi
MedIm
35
18
0
19 Nov 2023
Causal Modeling with Stationary Diffusions
Lars Lorch
Andreas Krause
Bernhard Schölkopf
DiffM
12
8
0
26 Oct 2023
Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration
Longlin Yu
Tianyu Xie
Yu Zhu
Tong Yang
Xiangyu Zhang
Cheng Zhang
DiffM
21
6
0
26 Oct 2023
HyperFields: Towards Zero-Shot Generation of NeRFs from Text
Sudarshan Babu
Richard Liu
Avery Zhou
Michael Maire
Greg Shakhnarovich
Rana Hanocka
AI4CE
19
10
0
26 Oct 2023
Shortcuts for causal discovery of nonlinear models by score matching
Francesco Montagna
Nicoletta Noceti
Lorenzo Rosasco
Francesco Locatello
CML
53
3
0
22 Oct 2023
Enhancing Sample Quality through Minimum Energy Importance Weights
Chaofan Huang
V. R. Joseph
11
0
0
12 Oct 2023
Efficient Planning with Latent Diffusion
Wenhao Li
DiffM
38
4
0
30 Sep 2023
On Computationally Efficient Learning of Exponential Family Distributions
Abhin Shah
Devavrat Shah
G. Wornell
44
0
0
12 Sep 2023
Arbitrary Distributions Mapping via SyMOT-Flow: A Flow-based Approach Integrating Maximum Mean Discrepancy and Optimal Transport
Zhe Xiong
Qiaoqiao Ding
Xiaoqun Zhang
OOD
13
0
0
26 Aug 2023
1
2
3
4
5
6
Next