ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXivPDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,815 papers shown
Title
Adaptive and Calibrated Ensemble Learning with Dependent Tail-free
  Process
Adaptive and Calibrated Ensemble Learning with Dependent Tail-free Process
Jeremiah Zhe Liu
John Paisley
M. Kioumourtzoglou
B. Coull
17
1
0
08 Dec 2018
Random Spiking and Systematic Evaluation of Defenses Against Adversarial
  Examples
Random Spiking and Systematic Evaluation of Defenses Against Adversarial Examples
Huangyi Ge
Sze Yiu Chau
Bruno Ribeiro
Ninghui Li
AAML
27
1
0
05 Dec 2018
Batch Selection for Parallelisation of Bayesian Quadrature
Batch Selection for Parallelisation of Bayesian Quadrature
E. Wagstaff
Saad Hamid
Michael A. Osborne
24
6
0
04 Dec 2018
Stochastic Gradient MCMC with Repulsive Forces
Stochastic Gradient MCMC with Repulsive Forces
Víctor Gallego
D. Insua
BDL
4
37
0
30 Nov 2018
Uncertainty aware audiovisual activity recognition using deep Bayesian
  variational inference
Uncertainty aware audiovisual activity recognition using deep Bayesian variational inference
Mahesh Subedar
R. Krishnan
P. López-Meyer
Omesh Tickoo
Jonathan Huang
BDL
EDL
UQCV
29
0
0
27 Nov 2018
Sequential Variational Autoencoders for Collaborative Filtering
Sequential Variational Autoencoders for Collaborative Filtering
Noveen Sachdeva
Giuseppe Manco
Ettore Ritacco
Vikram Pudi
BDL
18
102
0
25 Nov 2018
Streamlining Variational Inference for Constraint Satisfaction Problems
Streamlining Variational Inference for Constraint Satisfaction Problems
Aditya Grover
Tudor Achim
Stefano Ermon
17
19
0
24 Nov 2018
Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation
  for Structure-wise Quality Control
Bayesian QuickNAT: Model Uncertainty in Deep Whole-Brain Segmentation for Structure-wise Quality Control
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
UQCV
22
119
0
24 Nov 2018
Surrogate-assisted parallel tempering for Bayesian neural learning
Surrogate-assisted parallel tempering for Bayesian neural learning
Rohitash Chandra
Konark Jain
Arpit Kapoor
Ashray Aman
BDL
17
8
0
21 Nov 2018
Joint Mapping and Calibration via Differentiable Sensor Fusion
Joint Mapping and Calibration via Differentiable Sensor Fusion
Jonathan P. Chen
F. Obermeyer
V. Lyapunov
L. Gueguen
Noah D. Goodman
23
0
0
21 Nov 2018
Black-Box Autoregressive Density Estimation for State-Space Models
Black-Box Autoregressive Density Estimation for State-Space Models
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
BDL
11
6
0
20 Nov 2018
Geometry of Friston's active inference
Geometry of Friston's active inference
Martin Biehl
LLMSV
AI4CE
LRM
9
0
0
20 Nov 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural
  Networks
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
15
354
0
09 Nov 2018
A Bayesian Perspective of Statistical Machine Learning for Big Data
A Bayesian Perspective of Statistical Machine Learning for Big Data
R. Sambasivan
Sourish Das
S. Sahu
BDL
GP
14
19
0
09 Nov 2018
Deep Ensemble Bayesian Active Learning : Addressing the Mode Collapse
  issue in Monte Carlo dropout via Ensembles
Deep Ensemble Bayesian Active Learning : Addressing the Mode Collapse issue in Monte Carlo dropout via Ensembles
Remus Pop
Patric Fulop
UQCV
27
40
0
09 Nov 2018
Large-Scale Visual Active Learning with Deep Probabilistic Ensembles
Large-Scale Visual Active Learning with Deep Probabilistic Ensembles
Kashyap Chitta
J. Álvarez
Adam Lesnikowski
BDL
UQCV
11
34
0
08 Nov 2018
A Factor Graph Approach to Automated Design of Bayesian Signal
  Processing Algorithms
A Factor Graph Approach to Automated Design of Bayesian Signal Processing Algorithms
Gautam Srivastava
T. V. D. Laar
Rajani Singh
19
54
0
08 Nov 2018
BAR: Bayesian Activity Recognition using variational inference
BAR: Bayesian Activity Recognition using variational inference
R. Krishnan
Mahesh Subedar
S. Bhatnagar
BDL
UQCV
19
20
0
08 Nov 2018
Deep Probabilistic Ensembles: Approximate Variational Inference through
  KL Regularization
Deep Probabilistic Ensembles: Approximate Variational Inference through KL Regularization
Matthew Maciejewski
J. Álvarez
Adam Lesnikowski
BDL
UQCV
14
3
0
06 Nov 2018
A Variational Inference Algorithm for BKMR in the Cross-Sectional
  Setting
A Variational Inference Algorithm for BKMR in the Cross-Sectional Setting
Raphael Small
B. Coull
14
0
0
06 Nov 2018
Superregular grammars do not provide additional explanatory power but
  allow for a compact analysis of animal song
Superregular grammars do not provide additional explanatory power but allow for a compact analysis of animal song
Takashi Morita
H. Koda
14
7
0
05 Nov 2018
DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word
  Corpora
DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word Corpora
S. Zee
Alice Havrileck
9
3
0
03 Nov 2018
VIREL: A Variational Inference Framework for Reinforcement Learning
VIREL: A Variational Inference Framework for Reinforcement Learning
M. Fellows
Anuj Mahajan
Tim G. J. Rudner
Shimon Whiteson
DRL
32
53
0
03 Nov 2018
A Bayesian Perspective of Convolutional Neural Networks through a
  Deconvolutional Generative Model
A Bayesian Perspective of Convolutional Neural Networks through a Deconvolutional Generative Model
Yujia Wang
Nhat Ho
David J. Miller
Anima Anandkumar
Michael I. Jordan
Richard G. Baraniuk
BDL
GAN
29
8
0
01 Nov 2018
Strong consistency of the AIC, BIC, $C_p$ and KOO methods in
  high-dimensional multivariate linear regression
Strong consistency of the AIC, BIC, CpC_pCp​ and KOO methods in high-dimensional multivariate linear regression
Z. Bai
Y. Fujikoshi
Jiang Hu
20
5
0
30 Oct 2018
Using Large Ensembles of Control Variates for Variational Inference
Using Large Ensembles of Control Variates for Variational Inference
Tomas Geffner
Justin Domke
BDL
14
34
0
30 Oct 2018
Variational Inference with Tail-adaptive f-Divergence
Variational Inference with Tail-adaptive f-Divergence
Dilin Wang
Hao Liu
Qiang Liu
19
55
0
29 Oct 2018
Consistency of ELBO maximization for model selection
Consistency of ELBO maximization for model selection
Badr-Eddine Chérief-Abdellatif
6
18
0
28 Oct 2018
Adversarial Semantic Scene Completion from a Single Depth Image
Adversarial Semantic Scene Completion from a Single Depth Image
Yida Wang
D. Tan
Nassir Navab
Federico Tombari
3DPC
19
32
0
25 Oct 2018
Expectation Propagation for Poisson Data
Expectation Propagation for Poisson Data
Chen Zhang
Simon Arridge
Bangti Jin
14
13
0
18 Oct 2018
Calibration procedures for approximate Bayesian credible sets
Calibration procedures for approximate Bayesian credible sets
J. Lee
Geoff K. Nicholls
Robin J. Ryder
6
13
0
15 Oct 2018
Rao-Blackwellized Stochastic Gradients for Discrete Distributions
Rao-Blackwellized Stochastic Gradients for Discrete Distributions
Runjing Liu
Jeffrey Regier
Nilesh Tripuraneni
Michael I. Jordan
Jon D. McAuliffe
15
31
0
10 Oct 2018
Non-linear process convolutions for multi-output Gaussian processes
Non-linear process convolutions for multi-output Gaussian processes
Mauricio A. Alvarez
W. Ward
Cristian Guarnizo Lemus
11
22
0
10 Oct 2018
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
21
17
0
10 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
19
110
0
09 Oct 2018
Deep learning with differential Gaussian process flows
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
10
42
0
09 Oct 2018
Design by adaptive sampling
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
41
65
0
08 Oct 2018
Stein Neural Sampler
Stein Neural Sampler
Tianyang Hu
Zixiang Chen
Hanxi Sun
Jincheng Bai
Mao Ye
Guang Cheng
SyDa
GAN
22
34
0
08 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
25
60
0
06 Oct 2018
Deep Generative Video Compression
Deep Generative Video Compression
Jun Han
Salvator Lombardo
Christopher Schroers
Stephan Mandt
VGen
32
58
0
05 Oct 2018
Doubly Semi-Implicit Variational Inference
Doubly Semi-Implicit Variational Inference
Dmitry Molchanov
V. Kharitonov
Artem Sobolev
Dmitry Vetrov
BDL
18
38
0
05 Oct 2018
Semiparametric Regression using Variational Approximations
Semiparametric Regression using Variational Approximations
Francis K. C. Hui
Chong You
H. Shang
Samuel G. Müller
14
16
0
03 Oct 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural
  Network
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
24
171
0
01 Oct 2018
Compiling Stan to Generative Probabilistic Languages and Extension to
  Deep Probabilistic Programming
Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
Guillaume Baudart
Javier Burroni
Martin Hirzel
Louis Mandel
Avraham Shinnar
BDL
15
4
0
30 Sep 2018
Online Inference with Multi-modal Likelihood Functions
Online Inference with Multi-modal Likelihood Functions
Mathieu Gerber
K. Heine
62
0
0
28 Sep 2018
Variance reduction properties of the reparameterization trick
Variance reduction properties of the reparameterization trick
Ming Xu
M. Quiroz
Robert Kohn
Scott A. Sisson
AAML
16
65
0
27 Sep 2018
Practical bounds on the error of Bayesian posterior approximations: A
  nonasymptotic approach
Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic approach
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
19
28
0
25 Sep 2018
Discretely Relaxing Continuous Variables for tractable Variational
  Inference
Discretely Relaxing Continuous Variables for tractable Variational Inference
Trefor W. Evans
P. Nair
BDL
52
0
0
12 Sep 2018
Topic Memory Networks for Short Text Classification
Topic Memory Networks for Short Text Classification
Jichuan Zeng
Jing Li
Yan Song
Cuiyun Gao
Michael R. Lyu
Irwin King
BDL
14
131
0
11 Sep 2018
Bayesian dynamic variable selection in high dimensions
Bayesian dynamic variable selection in high dimensions
Gary Koop
Dimitris Korobilis
8
38
0
09 Sep 2018
Previous
123...323334353637
Next