Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.09249
Cited By
On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models
30 November 2015
Jürgen Schmidhuber
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models"
18 / 18 papers shown
Title
FACTS: A Factored State-Space Framework For World Modelling
Li Nanbo
Firas Laakom
Yucheng Xu
Wenyi Wang
Jürgen Schmidhuber
AI4TS
193
0
0
28 Oct 2024
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
31
13
0
01 Feb 2023
Learning One Abstract Bit at a Time Through Self-Invented Experiments Encoded as Neural Networks
Vincent Herrmann
Louis Kirsch
Jürgen Schmidhuber
AI4CE
46
5
0
29 Dec 2022
Goal-Conditioned Generators of Deep Policies
Francesco Faccio
Vincent Herrmann
Aditya A. Ramesh
Louis Kirsch
Jürgen Schmidhuber
OffRL
40
8
0
04 Jul 2022
Predictive Information Accelerates Learning in RL
Kuang-Huei Lee
Ian S. Fischer
Anthony Z. Liu
Yijie Guo
Honglak Lee
John F. Canny
S. Guadarrama
23
72
0
24 Jul 2020
Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs
Jianzhun Du
Joseph D. Futoma
Finale Doshi-Velez
27
49
0
29 Jun 2020
Will we ever have Conscious Machines?
P. Krauss
Andreas Maier
38
30
0
31 Mar 2020
Learning to Predict Without Looking Ahead: World Models Without Forward Prediction
C. Freeman
Luke Metz
David R Ha
33
35
0
29 Oct 2019
Unity: A General Platform for Intelligent Agents
Arthur Juliani
Vincent-Pierre Berges
Esh Vckay
Andrew Cohen
Jonathan Harper
...
Chris Goy
Yuan Gao
Hunter Henry
Marwan Mattar
Danny Lange
16
808
0
07 Sep 2018
Recurrent World Models Facilitate Policy Evolution
David R Ha
Jürgen Schmidhuber
SyDa
TPM
34
914
0
04 Sep 2018
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas Griffiths
26
68
0
12 Jul 2018
A Survey of Deep Learning Techniques for Mobile Robot Applications
Jahanzaib Shabbir
T. Anwer
21
35
0
20 Mar 2018
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions
Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
BDL
OCL
DRL
34
290
0
28 Feb 2018
One Big Net For Everything
Jürgen Schmidhuber
CLL
31
34
0
24 Feb 2018
Imagination-Augmented Agents for Deep Reinforcement Learning
T. Weber
S. Racanière
David P. Reichert
Lars Buesing
A. Guez
...
Razvan Pascanu
Peter W. Battaglia
Demis Hassabis
David Silver
Daan Wierstra
LM&Ro
51
551
0
19 Jul 2017
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
23
289
0
28 Dec 2016
Learning a Driving Simulator
Eder Santana
George Hotz
GAN
28
226
0
03 Aug 2016
Multiagent Cooperation and Competition with Deep Reinforcement Learning
Ardi Tampuu
Tambet Matiisen
Dorian Kodelja
Ilya Kuzovkin
Kristjan Korjus
Juhan Aru
Jaan Aru
Raul Vicente
24
857
0
27 Nov 2015
1