Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.04599
Cited By
DeepFool: a simple and accurate method to fool deep neural networks
14 November 2015
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DeepFool: a simple and accurate method to fool deep neural networks"
50 / 905 papers shown
Title
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
13
191
0
31 Dec 2017
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
37
1,090
0
27 Dec 2017
ReabsNet: Detecting and Revising Adversarial Examples
Jiefeng Chen
Zihang Meng
Changtian Sun
Weiliang Tang
Yinglun Zhu
AAML
GAN
29
4
0
21 Dec 2017
Training Ensembles to Detect Adversarial Examples
Alexander Bagnall
Razvan Bunescu
Gordon Stewart
AAML
26
38
0
11 Dec 2017
NAG: Network for Adversary Generation
Konda Reddy Mopuri
Utkarsh Ojha
Utsav Garg
R. Venkatesh Babu
AAML
27
144
0
09 Dec 2017
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
40
1,391
0
08 Dec 2017
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
Cho-Jui Hsieh
GAN
AAML
35
49
0
06 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
24
14
0
03 Dec 2017
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
26
249
0
30 Nov 2017
Geometric robustness of deep networks: analysis and improvement
Can Kanbak
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
OOD
AAML
44
130
0
24 Nov 2017
Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training
Xi Wu
Uyeong Jang
Jiefeng Chen
Lingjiao Chen
S. Jha
AAML
35
21
0
21 Nov 2017
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
41
145
0
20 Nov 2017
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
14
104
0
01 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
58
855
0
29 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
80
858
0
29 Oct 2017
On Data-Driven Saak Transform
C.-C. Jay Kuo
Yueru Chen
AI4TS
21
93
0
11 Oct 2017
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming-Yu Liu
Min Sun
Jia-Bin Huang
AAML
29
48
0
02 Oct 2017
Provably Minimally-Distorted Adversarial Examples
Nicholas Carlini
Guy Katz
Clark W. Barrett
D. Dill
AAML
33
89
0
29 Sep 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
24
637
0
13 Sep 2017
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
34
134
0
11 Sep 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
12
15
0
08 Sep 2017
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid
Marco Melis
Ambra Demontis
Battista Biggio
Gavin Brown
Giorgio Fumera
Fabio Roli
AAML
21
98
0
23 Aug 2017
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
Yinpeng Dong
Hang Su
Jun Zhu
Fan Bao
AAML
39
128
0
18 Aug 2017
UPSET and ANGRI : Breaking High Performance Image Classifiers
Sayantan Sarkar
Ankan Bansal
U. Mahbub
Rama Chellappa
AAML
30
108
0
04 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
A. Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
89
11,872
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
D. Song
AAML
43
242
0
15 Jun 2017
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Yizhen Wang
S. Jha
Kamalika Chaudhuri
AAML
19
154
0
13 Jun 2017
Towards Robust Detection of Adversarial Examples
Tianyu Pang
Chao Du
Yinpeng Dong
Jun Zhu
AAML
39
18
0
02 Jun 2017
Classification regions of deep neural networks
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
Stefano Soatto
31
51
0
26 May 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
13
1,199
0
25 May 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
45
506
0
23 May 2017
Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction
Bin Liang
Hongcheng Li
Miaoqiang Su
Xirong Li
Wenchang Shi
Xiaofeng Wang
AAML
14
216
0
23 May 2017
Regularizing deep networks using efficient layerwise adversarial training
S. Sankaranarayanan
Arpit Jain
Rama Chellappa
Ser Nam Lim
AAML
30
97
0
22 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
61
1,842
0
20 May 2017
MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense
Sailik Sengupta
Tathagata Chakraborti
S. Kambhampati
AAML
29
63
0
19 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
73
2,701
0
19 May 2017
DeepCorrect: Correcting DNN models against Image Distortions
Tejas S. Borkar
Lina Karam
27
93
0
05 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
86
798
0
28 Apr 2017
Universal Adversarial Perturbations Against Semantic Image Segmentation
J. H. Metzen
Mummadi Chaithanya Kumar
Thomas Brox
Volker Fischer
AAML
30
287
0
19 Apr 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
41
555
0
11 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
25
1,237
0
04 Apr 2017
Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective
Seong Joon Oh
Mario Fritz
Bernt Schiele
CVBM
AAML
339
160
0
28 Mar 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Tactics of Adversarial Attack on Deep Reinforcement Learning Agents
Yen-Chen Lin
Zhang-Wei Hong
Yuan-Hong Liao
Meng-Li Shih
Ming-Yu Liu
Min Sun
AAML
28
411
0
08 Mar 2017
Compositional Falsification of Cyber-Physical Systems with Machine Learning Components
T. Dreossi
Alexandre Donzé
S. Seshia
AAML
32
230
0
02 Mar 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
27
237
0
19 Dec 2016
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
62
2,513
0
26 Oct 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
183
933
0
21 Oct 2016
Robustness of classifiers: from adversarial to random noise
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
16
367
0
31 Aug 2016
Previous
1
2
3
...
17
18
19
Next