ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.04599
  4. Cited By
DeepFool: a simple and accurate method to fool deep neural networks

DeepFool: a simple and accurate method to fool deep neural networks

14 November 2015
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
    AAML
ArXivPDFHTML

Papers citing "DeepFool: a simple and accurate method to fool deep neural networks"

50 / 905 papers shown
Title
A General Framework for Adversarial Examples with Objectives
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
13
191
0
31 Dec 2017
Adversarial Patch
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
37
1,090
0
27 Dec 2017
ReabsNet: Detecting and Revising Adversarial Examples
ReabsNet: Detecting and Revising Adversarial Examples
Jiefeng Chen
Zihang Meng
Changtian Sun
Weiliang Tang
Yinglun Zhu
AAML
GAN
29
4
0
21 Dec 2017
Training Ensembles to Detect Adversarial Examples
Training Ensembles to Detect Adversarial Examples
Alexander Bagnall
Razvan Bunescu
Gordon Stewart
AAML
26
38
0
11 Dec 2017
NAG: Network for Adversary Generation
NAG: Network for Adversary Generation
Konda Reddy Mopuri
Utkarsh Ojha
Utsav Garg
R. Venkatesh Babu
AAML
27
144
0
09 Dec 2017
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
40
1,391
0
08 Dec 2017
Generative Adversarial Perturbations
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
31
351
0
06 Dec 2017
Attacking Visual Language Grounding with Adversarial Examples: A Case
  Study on Neural Image Captioning
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
Cho-Jui Hsieh
GAN
AAML
35
49
0
06 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact
  Convolution
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
24
14
0
03 Dec 2017
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
26
249
0
30 Nov 2017
Geometric robustness of deep networks: analysis and improvement
Geometric robustness of deep networks: analysis and improvement
Can Kanbak
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
OOD
AAML
44
130
0
24 Nov 2017
Reinforcing Adversarial Robustness using Model Confidence Induced by
  Adversarial Training
Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training
Xi Wu
Uyeong Jang
Jiefeng Chen
Lingjiao Chen
S. Jha
AAML
35
21
0
21 Nov 2017
Adversarial Attacks Beyond the Image Space
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
41
145
0
20 Nov 2017
Attacking Binarized Neural Networks
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
14
104
0
01 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
58
855
0
29 Oct 2017
Interpretation of Neural Networks is Fragile
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
80
858
0
29 Oct 2017
On Data-Driven Saak Transform
On Data-Driven Saak Transform
C.-C. Jay Kuo
Yueru Chen
AI4TS
21
93
0
11 Oct 2017
Detecting Adversarial Attacks on Neural Network Policies with Visual
  Foresight
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming-Yu Liu
Min Sun
Jia-Bin Huang
AAML
29
48
0
02 Oct 2017
Provably Minimally-Distorted Adversarial Examples
Provably Minimally-Distorted Adversarial Examples
Nicholas Carlini
Guy Katz
Clark W. Barrett
D. Dill
AAML
33
89
0
29 Sep 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial
  Examples
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
24
637
0
13 Sep 2017
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep
  Neural Networks
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
34
134
0
11 Sep 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
12
15
0
08 Sep 2017
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the
  iCub Humanoid
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid
Marco Melis
Ambra Demontis
Battista Biggio
Gavin Brown
Giorgio Fumera
Fabio Roli
AAML
21
98
0
23 Aug 2017
Towards Interpretable Deep Neural Networks by Leveraging Adversarial
  Examples
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
Yinpeng Dong
Hang Su
Jun Zhu
Fan Bao
AAML
39
128
0
18 Aug 2017
UPSET and ANGRI : Breaking High Performance Image Classifiers
UPSET and ANGRI : Breaking High Performance Image Classifiers
Sayantan Sarkar
Ankan Bansal
U. Mahbub
Rama Chellappa
AAML
30
108
0
04 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
A. Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
89
11,872
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
D. Song
AAML
43
242
0
15 Jun 2017
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Analyzing the Robustness of Nearest Neighbors to Adversarial Examples
Yizhen Wang
S. Jha
Kamalika Chaudhuri
AAML
19
154
0
13 Jun 2017
Towards Robust Detection of Adversarial Examples
Towards Robust Detection of Adversarial Examples
Tianyu Pang
Chao Du
Yinpeng Dong
Jun Zhu
AAML
39
18
0
02 Jun 2017
Classification regions of deep neural networks
Classification regions of deep neural networks
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
Stefano Soatto
31
51
0
26 May 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
13
1,199
0
25 May 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial
  Manipulation
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
45
506
0
23 May 2017
Detecting Adversarial Image Examples in Deep Networks with Adaptive
  Noise Reduction
Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction
Bin Liang
Hongcheng Li
Miaoqiang Su
Xirong Li
Wenchang Shi
Xiaofeng Wang
AAML
14
216
0
23 May 2017
Regularizing deep networks using efficient layerwise adversarial
  training
Regularizing deep networks using efficient layerwise adversarial training
S. Sankaranarayanan
Arpit Jain
Rama Chellappa
Ser Nam Lim
AAML
30
97
0
22 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
61
1,842
0
20 May 2017
MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial
  Attacks with Moving Target Defense
MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense
Sailik Sengupta
Tathagata Chakraborti
S. Kambhampati
AAML
29
63
0
19 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
73
2,701
0
19 May 2017
DeepCorrect: Correcting DNN models against Image Distortions
DeepCorrect: Correcting DNN models against Image Distortions
Tejas S. Borkar
Lina Karam
27
93
0
05 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
86
798
0
28 Apr 2017
Universal Adversarial Perturbations Against Semantic Image Segmentation
Universal Adversarial Perturbations Against Semantic Image Segmentation
J. H. Metzen
Mummadi Chaithanya Kumar
Thomas Brox
Volker Fischer
AAML
30
287
0
19 Apr 2017
The Space of Transferable Adversarial Examples
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
41
555
0
11 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural
  Networks
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
25
1,237
0
04 Apr 2017
Adversarial Image Perturbation for Privacy Protection -- A Game Theory
  Perspective
Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective
Seong Joon Oh
Mario Fritz
Bernt Schiele
CVBM
AAML
339
160
0
28 Mar 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning
  Systems
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Tactics of Adversarial Attack on Deep Reinforcement Learning Agents
Tactics of Adversarial Attack on Deep Reinforcement Learning Agents
Yen-Chen Lin
Zhang-Wei Hong
Yuan-Hong Liao
Meng-Li Shih
Ming-Yu Liu
Min Sun
AAML
28
411
0
08 Mar 2017
Compositional Falsification of Cyber-Physical Systems with Machine
  Learning Components
Compositional Falsification of Cyber-Physical Systems with Machine Learning Components
T. Dreossi
Alexandre Donzé
S. Seshia
AAML
32
230
0
02 Mar 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
27
237
0
19 Dec 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
62
2,513
0
26 Oct 2016
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
183
933
0
21 Oct 2016
Robustness of classifiers: from adversarial to random noise
Robustness of classifiers: from adversarial to random noise
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
16
367
0
31 Aug 2016
Previous
123...171819
Next