ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12948
19
1

Generating Watermarked Adversarial Texts

25 October 2021
Mingjie Li
Hanzhou Wu
Xinpeng Zhang
    AAML
    WaLM
ArXivPDFHTML
Abstract

Adversarial example generation has been a hot spot in recent years because it can cause deep neural networks (DNNs) to misclassify the generated adversarial examples, which reveals the vulnerability of DNNs, motivating us to find good solutions to improve the robustness of DNN models. Due to the extensiveness and high liquidity of natural language over the social networks, various natural language based adversarial attack algorithms have been proposed in the literature. These algorithms generate adversarial text examples with high semantic quality. However, the generated adversarial text examples may be maliciously or illegally used. In order to tackle with this problem, we present a general framework for generating watermarked adversarial text examples. For each word in a given text, a set of candidate words are determined to ensure that all the words in the set can be used to either carry secret bits or facilitate the construction of adversarial example. By applying a word-level adversarial text generation algorithm, the watermarked adversarial text example can be finally generated. Experiments show that the adversarial text examples generated by the proposed method not only successfully fool advanced DNN models, but also carry a watermark that can effectively verify the ownership and trace the source of the adversarial examples. Moreover, the watermark can still survive after attacked with adversarial example generation algorithms, which has shown the applicability and superiority.

View on arXiv
Comments on this paper