Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.04599
Cited By
v1
v2
v3 (latest)
DeepFool: a simple and accurate method to fool deep neural networks
14 November 2015
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DeepFool: a simple and accurate method to fool deep neural networks"
50 / 2,298 papers shown
Title
Unravelling Robustness of Deep Learning based Face Recognition Against Adversarial Attacks
Gaurav Goswami
Nalini Ratha
Akshay Agarwal
Richa Singh
Mayank Vatsa
AAML
97
166
0
22 Feb 2018
Generalizable Adversarial Examples Detection Based on Bi-model Decision Mismatch
João Monteiro
Isabela Albuquerque
Zahid Akhtar
T. Falk
AAML
90
29
0
21 Feb 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
115
63
0
21 Feb 2018
On Lyapunov exponents and adversarial perturbation
Vinay Uday Prabhu
Nishant Desai
John Whaley
AAML
22
4
0
20 Feb 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
85
228
0
19 Feb 2018
Divide, Denoise, and Defend against Adversarial Attacks
Seyed-Mohsen Moosavi-Dezfooli
A. Shrivastava
Oncel Tuzel
AAML
57
45
0
19 Feb 2018
Robustness of Rotation-Equivariant Networks to Adversarial Perturbations
Beranger Dumont
Simona Maggio
Pablo Montalvo
AAML
69
24
0
19 Feb 2018
DARTS: Deceiving Autonomous Cars with Toxic Signs
Chawin Sitawarin
A. Bhagoji
Arsalan Mosenia
M. Chiang
Prateek Mittal
AAML
117
236
0
18 Feb 2018
ASP:A Fast Adversarial Attack Example Generation Framework based on Adversarial Saliency Prediction
Fuxun Yu
Qide Dong
Xiang Chen
AAML
62
6
0
15 Feb 2018
Learning Privacy Preserving Encodings through Adversarial Training
Francesco Pittaluga
S. Koppal
Ayan Chakrabarti
PICV
160
76
0
14 Feb 2018
Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models
Mengying Sun
Fengyi Tang
Jinfeng Yi
Fei Wang
Jiayu Zhou
AAML
OOD
MedIm
85
63
0
13 Feb 2018
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
Felix Kreuk
A. Barak
Shir Aviv-Reuven
Moran Baruch
Benny Pinkas
Joseph Keshet
AAML
75
118
0
13 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
115
309
0
12 Feb 2018
Fibres of Failure: Classifying errors in predictive processes
L. Carlsson
Gunnar Carlsson
Mikael Vejdemo-Johansson
AI4CE
107
4
0
09 Feb 2018
Blind Pre-Processing: A Robust Defense Method Against Adversarial Examples
Adnan Siraj Rakin
Zhezhi He
Boqing Gong
Deliang Fan
AAML
87
4
0
05 Feb 2018
First-order Adversarial Vulnerability of Neural Networks and Input Dimension
Carl-Johann Simon-Gabriel
Yann Ollivier
Léon Bottou
Bernhard Schölkopf
David Lopez-Paz
AAML
111
48
0
05 Feb 2018
Towards an Understanding of Neural Networks in Natural-Image Spaces
Yifei Fan
A. Yezzi
AAML
GAN
30
2
0
27 Jan 2018
Deflecting Adversarial Attacks with Pixel Deflection
Aaditya (Adi) Prakash
N. Moran
Solomon Garber
Antonella DiLillo
J. Storer
AAML
110
304
0
26 Jan 2018
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Konda Reddy Mopuri
Aditya Ganeshan
R. Venkatesh Babu
AAML
151
206
0
24 Jan 2018
Adversarial Texts with Gradient Methods
Zhitao Gong
Wenlu Wang
Yangqiu Song
Basel Alomair
Wei-Shinn Ku
AAML
106
77
0
22 Jan 2018
Sparsity-based Defense against Adversarial Attacks on Linear Classifiers
Zhinus Marzi
S. Gopalakrishnan
Upamanyu Madhow
Ramtin Pedarsani
AAML
102
31
0
15 Jan 2018
A3T: Adversarially Augmented Adversarial Training
Akram Erraqabi
A. Baratin
Yoshua Bengio
Simon Lacoste-Julien
AAML
94
9
0
12 Jan 2018
Fooling End-to-end Speaker Verification by Adversarial Examples
Felix Kreuk
Yossi Adi
Moustapha Cissé
Joseph Keshet
AAML
84
203
0
10 Jan 2018
Less is More: Culling the Training Set to Improve Robustness of Deep Neural Networks
Yongshuai Liu
Jiyu Chen
Hao Chen
AAML
82
14
0
09 Jan 2018
Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos
Chawin Sitawarin
A. Bhagoji
Arsalan Mosenia
Prateek Mittal
M. Chiang
AAML
80
69
0
09 Jan 2018
Spatially Transformed Adversarial Examples
Chaowei Xiao
Jun-Yan Zhu
Yue Liu
Warren He
M. Liu
Basel Alomair
AAML
104
524
0
08 Jan 2018
Generating Adversarial Examples with Adversarial Networks
Chaowei Xiao
Yue Liu
Jun-Yan Zhu
Warren He
M. Liu
Basel Alomair
GAN
AAML
129
905
0
08 Jan 2018
Denoising Dictionary Learning Against Adversarial Perturbations
John Mitro
D. Bridge
Steven D. Prestwich
AAML
34
5
0
07 Jan 2018
Adversarial Perturbation Intensity Achieving Chosen Intra-Technique Transferability Level for Logistic Regression
Martin Gubri
AAML
20
0
0
06 Jan 2018
Neural Networks in Adversarial Setting and Ill-Conditioned Weight Space
M. Singh
Abhishek Sinha
Balaji Krishnamurthy
AAML
43
7
0
03 Jan 2018
Did you hear that? Adversarial Examples Against Automatic Speech Recognition
M. Alzantot
Bharathan Balaji
Mani B. Srivastava
AAML
80
252
0
02 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
146
1,873
0
02 Jan 2018
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
84
196
0
31 Dec 2017
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
98
1,099
0
27 Dec 2017
Exploring the Space of Black-box Attacks on Deep Neural Networks
A. Bhagoji
Warren He
Yue Liu
Basel Alomair
AAML
28
70
0
27 Dec 2017
Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks
Siqi Yang
Arnold Wiliem
Shaokang Chen
Brian C. Lovell
CVBM
AAML
61
3
0
22 Dec 2017
ReabsNet: Detecting and Revising Adversarial Examples
Jiefeng Chen
Zihang Meng
Changtian Sun
Weiliang Tang
Yinglun Zhu
AAML
GAN
49
4
0
21 Dec 2017
Adversarial Examples: Attacks and Defenses for Deep Learning
Xiaoyong Yuan
Pan He
Qile Zhu
Xiaolin Li
SILM
AAML
153
1,628
0
19 Dec 2017
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
103
1,352
0
12 Dec 2017
Training Ensembles to Detect Adversarial Examples
Alexander Bagnall
Razvan Bunescu
Gordon Stewart
AAML
57
39
0
11 Dec 2017
NAG: Network for Adversary Generation
Konda Reddy Mopuri
Utkarsh Ojha
Utsav Garg
R. Venkatesh Babu
AAML
88
146
0
09 Dec 2017
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
181
1,411
0
08 Dec 2017
Exploring the Landscape of Spatial Robustness
Logan Engstrom
Brandon Tran
Dimitris Tsipras
Ludwig Schmidt
Aleksander Madry
AAML
160
363
0
07 Dec 2017
Adversarial Examples that Fool Detectors
Jiajun Lu
Hussein Sibai
Evan Fabry
AAML
84
144
0
07 Dec 2017
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
88
356
0
06 Dec 2017
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
Cho-Jui Hsieh
GAN
AAML
84
49
0
06 Dec 2017
A+D Net: Training a Shadow Detector with Adversarial Shadow Attenuation
Hieu M. Le
T. F. Y. Vicente
Vu Nguyen
Minh Hoai
Dimitris Samaras
49
114
0
04 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
62
14
0
03 Dec 2017
Where Classification Fails, Interpretation Rises
Chanh Nguyen
Georgi Georgiev
Yujie Ji
Ting Wang
AAML
25
0
0
02 Dec 2017
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
89
250
0
30 Nov 2017
Previous
1
2
3
...
43
44
45
46
Next