Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.04599
Cited By
v1
v2
v3 (latest)
DeepFool: a simple and accurate method to fool deep neural networks
14 November 2015
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DeepFool: a simple and accurate method to fool deep neural networks"
50 / 2,298 papers shown
Title
ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases
Pierre Stock
Moustapha Cissé
FaML
94
46
0
30 Nov 2017
On the Robustness of Semantic Segmentation Models to Adversarial Attacks
Anurag Arnab
O. Mikšík
Philip Torr
AAML
115
308
0
27 Nov 2017
Butterfly Effect: Bidirectional Control of Classification Performance by Small Additive Perturbation
Y. Yoo
Seonguk Park
Junyoung Choi
Sangdoo Yun
Nojun Kwak
AAML
50
4
0
27 Nov 2017
Geometric robustness of deep networks: analysis and improvement
Can Kanbak
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
OOD
AAML
119
131
0
24 Nov 2017
Adversarial Phenomenon in the Eyes of Bayesian Deep Learning
Ambrish Rawat
Martin Wistuba
Maria-Irina Nicolae
BDL
AAML
64
39
0
22 Nov 2017
Reinforcing Adversarial Robustness using Model Confidence Induced by Adversarial Training
Xi Wu
Uyeong Jang
Jiefeng Chen
Lingjiao Chen
S. Jha
AAML
94
21
0
21 Nov 2017
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
126
150
0
20 Nov 2017
How Wrong Am I? - Studying Adversarial Examples and their Impact on Uncertainty in Gaussian Process Machine Learning Models
Kathrin Grosse
David Pfaff
M. Smith
Michael Backes
AAML
82
9
0
17 Nov 2017
Enhanced Attacks on Defensively Distilled Deep Neural Networks
Yujia Liu
Weiming Zhang
Shaohua Li
Nenghai Yu
AAML
76
6
0
16 Nov 2017
Defense against Universal Adversarial Perturbations
Naveed Akhtar
Jian Liu
Ajmal Mian
AAML
103
208
0
16 Nov 2017
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
164
1,068
0
06 Nov 2017
HyperNetworks with statistical filtering for defending adversarial examples
Zhun Sun
Mete Ozay
Takayuki Okatani
AAML
54
16
0
06 Nov 2017
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
81
106
0
01 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
149
1,409
0
31 Oct 2017
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
141
791
0
30 Oct 2017
A Saak Transform Approach to Efficient, Scalable and Robust Handwritten Digits Recognition
Yueru Chen
Zhuwei Xu
Shanshan Cai
Yujian Lang
C.-C. Jay Kuo
66
35
0
29 Oct 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
145
866
0
29 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
153
874
0
29 Oct 2017
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
220
2,331
0
24 Oct 2017
On Data-Driven Saak Transform
C.-C. Jay Kuo
Yueru Chen
AI4TS
87
94
0
11 Oct 2017
Standard detectors aren't (currently) fooled by physical adversarial stop signs
Jiajun Lu
Hussein Sibai
Evan Fabry
David A. Forsyth
AAML
101
59
0
09 Oct 2017
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming-Yuan Liu
Min Sun
Jia-Bin Huang
AAML
96
48
0
02 Oct 2017
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
141
87
0
02 Oct 2017
Provably Minimally-Distorted Adversarial Examples
Nicholas Carlini
Guy Katz
Clark W. Barrett
D. Dill
AAML
105
89
0
29 Sep 2017
Verifying Properties of Binarized Deep Neural Networks
Nina Narodytska
S. Kasiviswanathan
L. Ryzhyk
Shmuel Sagiv
T. Walsh
AAML
117
217
0
19 Sep 2017
Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
85
212
0
17 Sep 2017
A Learning and Masking Approach to Secure Learning
Linh Nguyen
Sky Wang
Arunesh Sinha
AAML
63
2
0
13 Sep 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
80
641
0
13 Sep 2017
Art of singular vectors and universal adversarial perturbations
Valentin Khrulkov
Ivan Oseledets
AAML
78
132
0
11 Sep 2017
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
93
137
0
11 Sep 2017
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
53
15
0
08 Sep 2017
Is Deep Learning Safe for Robot Vision? Adversarial Examples against the iCub Humanoid
Marco Melis
Ambra Demontis
Battista Biggio
Gavin Brown
Giorgio Fumera
Fabio Roli
AAML
79
98
0
23 Aug 2017
CNN Fixations: An unraveling approach to visualize the discriminative image regions
Konda Reddy Mopuri
Utsav Garg
R. Venkatesh Babu
AAML
91
56
0
22 Aug 2017
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
Yinpeng Dong
Hang Su
Jun Zhu
Fan Bao
AAML
143
129
0
18 Aug 2017
Learning Universal Adversarial Perturbations with Generative Models
Jamie Hayes
G. Danezis
AAML
84
54
0
17 Aug 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
115
1,894
0
14 Aug 2017
Robust Physical-World Attacks on Deep Learning Models
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
Amir Rahmati
Chaowei Xiao
Atul Prakash
Tadayoshi Kohno
Basel Alomair
AAML
143
595
0
27 Jul 2017
Synthesizing Robust Adversarial Examples
Anish Athalye
Logan Engstrom
Ilya Sutskever
Kevin Kwok
AAML
68
66
0
24 Jul 2017
Confidence estimation in Deep Neural networks via density modelling
Akshayvarun Subramanya
Suraj Srinivas
R. Venkatesh Babu
65
51
0
21 Jul 2017
Efficient Defenses Against Adversarial Attacks
Valentina Zantedeschi
Maria-Irina Nicolae
Ambrish Rawat
AAML
74
297
0
21 Jul 2017
Fast Feature Fool: A data independent approach to universal adversarial perturbations
Konda Reddy Mopuri
Utsav Garg
R. Venkatesh Babu
AAML
126
205
0
18 Jul 2017
APE-GAN: Adversarial Perturbation Elimination with GAN
Shiwei Shen
Guoqing Jin
Feng Dai
Yongdong Zhang
GAN
122
221
0
18 Jul 2017
Houdini: Fooling Deep Structured Prediction Models
Moustapha Cissé
Yossi Adi
Natalia Neverova
Joseph Keshet
AAML
90
272
0
17 Jul 2017
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Jonas Rauber
Wieland Brendel
Matthias Bethge
AAML
82
283
0
13 Jul 2017
NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles
Jiajun Lu
Hussein Sibai
Evan Fabry
David A. Forsyth
AAML
104
282
0
12 Jul 2017
A Survey on Resilient Machine Learning
Atul Kumar
S. Mehta
OOD
AAML
83
16
0
11 Jul 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
123
172
0
08 Jul 2017
UPSET and ANGRI : Breaking High Performance Image Classifiers
Sayantan Sarkar
Ankan Bansal
U. Mahbub
Rama Chellappa
AAML
83
108
0
04 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
341
12,169
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
Basel Alomair
AAML
114
242
0
15 Jun 2017
Previous
1
2
3
...
44
45
46
Next