ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders

Importance Weighted Autoencoders

1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXivPDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 794 papers shown
Title
Linear Classifiers in Product Space Forms
Linear Classifiers in Product Space Forms
Puoya Tabaghi
Chao Pan
Eli Chien
Jianhao Peng
Olgica Milenković
32
9
0
19 Feb 2021
VAE Approximation Error: ELBO and Exponential Families
VAE Approximation Error: ELBO and Exponential Families
Alexander Shekhovtsov
D. Schlesinger
B. Flach
DRL
40
15
0
18 Feb 2021
Preventing Oversmoothing in VAE via Generalized Variance
  Parameterization
Preventing Oversmoothing in VAE via Generalized Variance Parameterization
Yuhta Takida
Wei-Hsiang Liao
Chieh-Hsin Lai
Toshimitsu Uesaka
Shusuke Takahashi
Yuki Mitsufuji
DRL
49
13
0
17 Feb 2021
Hierarchical VAEs Know What They Don't Know
Hierarchical VAEs Know What They Don't Know
Jakob Drachmann Havtorn
J. Frellsen
Søren Hauberg
Lars Maaløe
DRL
37
72
0
16 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
48
66
0
15 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical
  Distributions
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
222
402
0
10 Feb 2021
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian
  Random Function Approach
Reducing the Amortization Gap in Variational Autoencoders: A Bayesian Random Function Approach
Minyoung Kim
Vladimir Pavlovic
BDL
36
6
0
05 Feb 2021
Neural representation and generation for RNA secondary structures
Neural representation and generation for RNA secondary structures
Zichao Yan
William L. Hamilton
Mathieu Blanchette
40
2
0
01 Feb 2021
Learning Interpretable Deep State Space Model for Probabilistic Time
  Series Forecasting
Learning Interpretable Deep State Space Model for Probabilistic Time Series Forecasting
Longyuan Li
Junchi Yan
Xiaokang Yang
Yaohui Jin
OOD
BDL
AI4TS
47
60
0
31 Jan 2021
Estimating the Unique Information of Continuous Variables
Estimating the Unique Information of Continuous Variables
Ari Pakman
Amin Nejatbakhsh
D. Gilboa
Abdullah Makkeh
Luca Mazzucato
Michael Wibral
E. Schneidman
45
24
0
30 Jan 2021
Generalized Doubly Reparameterized Gradient Estimators
Generalized Doubly Reparameterized Gradient Estimators
Matthias Bauer
A. Mnih
BDL
13
14
0
26 Jan 2021
Unsupervised Imputation of Non-ignorably Missing Data Using
  Importance-Weighted Autoencoders
Unsupervised Imputation of Non-ignorably Missing Data Using Importance-Weighted Autoencoders
David K. Lim
N. Rashid
Junier B. Oliva
J. Ibrahim
31
3
0
18 Jan 2021
Multimodal Variational Autoencoders for Semi-Supervised Learning: In
  Defense of Product-of-Experts
Multimodal Variational Autoencoders for Semi-Supervised Learning: In Defense of Product-of-Experts
S. Kutuzova
Oswin Krause
D. McCloskey
Mads Nielsen
Christian Igel
13
17
0
18 Jan 2021
Mind the Gap when Conditioning Amortised Inference in Sequential
  Latent-Variable Models
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
29
15
0
18 Jan 2021
Cauchy-Schwarz Regularized Autoencoder
Cauchy-Schwarz Regularized Autoencoder
Linh-Tam Tran
Maja Pantic
M. Deisenroth
DRL
BDL
24
17
0
06 Jan 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Variational Determinant Estimation with Spherical Normalizing Flows
Variational Determinant Estimation with Spherical Normalizing Flows
Simon Passenheim
Emiel Hoogeboom
BDL
31
1
0
24 Dec 2020
Unsupervised Learning of Global Factors in Deep Generative Models
Unsupervised Learning of Global Factors in Deep Generative Models
I. Peis
Pablo Martínez Olmos
Antonio Artés-Rodríguez
BDL
DRL
34
8
0
15 Dec 2020
Recursive Tree Grammar Autoencoders
Recursive Tree Grammar Autoencoders
Benjamin Paassen
I. Koprinska
K. Yacef
22
8
0
03 Dec 2020
Mutual Information Constraints for Monte-Carlo Objectives
Mutual Information Constraints for Monte-Carlo Objectives
Gábor Melis
András Gyorgy
Phil Blunsom
21
1
0
01 Dec 2020
Improved Variational Bayesian Phylogenetic Inference with Normalizing
  Flows
Improved Variational Bayesian Phylogenetic Inference with Normalizing Flows
Cheng Zhang
BDL
37
27
0
01 Dec 2020
Recursive Inference for Variational Autoencoders
Recursive Inference for Variational Autoencoders
Minyoung Kim
Vladimir Pavlovic
DRL
8
13
0
17 Nov 2020
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep
  Gaussian Processes
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
10
3
0
01 Nov 2020
Gaussian Process Bandit Optimization of the Thermodynamic Variational
  Objective
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu-Linh Nguyen
Vaden Masrani
Rob Brekelmans
Michael A. Osborne
Frank Wood
24
5
0
29 Oct 2020
Generative Neurosymbolic Machines
Generative Neurosymbolic Machines
Jindong Jiang
Sungjin Ahn
BDL
OCL
225
68
0
23 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
87
16
0
19 Oct 2020
On the Difficulty of Unbiased Alpha Divergence Minimization
On the Difficulty of Unbiased Alpha Divergence Minimization
Tomas Geffner
Justin Domke
65
18
0
19 Oct 2020
Ensemble Kalman Variational Objectives: Nonlinear Latent Trajectory
  Inference with A Hybrid of Variational Inference and Ensemble Kalman Filter
Ensemble Kalman Variational Objectives: Nonlinear Latent Trajectory Inference with A Hybrid of Variational Inference and Ensemble Kalman Filter
Tsuyoshi Ishizone
T. Higuchi
Kazuyuki Nakamura
BDL
16
1
0
17 Oct 2020
Variational (Gradient) Estimate of the Score Function in Energy-based
  Latent Variable Models
Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models
Fan Bao
Kun Xu
Chongxuan Li
Lanqing Hong
Jun Zhu
Bo Zhang
DiffM
22
8
0
16 Oct 2020
Controlling the Interaction Between Generation and Inference in
  Semi-Supervised Variational Autoencoders Using Importance Weighting
Controlling the Interaction Between Generation and Inference in Semi-Supervised Variational Autoencoders Using Importance Weighting
G. Felhi
Joseph Leroux
Djamé Seddah
BDL
28
1
0
13 Oct 2020
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
  Estimator
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
44
38
0
09 Oct 2020
Uncertainty in Neural Processes
Uncertainty in Neural Processes
Saeid Naderiparizi
Ke-Li Chiu
Benjamin Bloem-Reddy
Frank Wood
UQCV
BDL
AI4CE
11
4
0
08 Oct 2020
Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders
Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders
Benoit Gaujac
Ilya Feige
David Barber
DiffM
BDL
28
0
0
07 Oct 2020
Narrative Text Generation with a Latent Discrete Plan
Narrative Text Generation with a Latent Discrete Plan
Harsh Jhamtani
Taylor Berg-Kirkpatrick
16
17
0
07 Oct 2020
Scalable Normalizing Flows for Permutation Invariant Densities
Scalable Normalizing Flows for Permutation Invariant Densities
Marin Bilos
Stephan Günnemann
TPM
19
23
0
07 Oct 2020
Self-Supervised Variational Auto-Encoders
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
37
13
0
05 Oct 2020
Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled
  Markov Chains
Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains
Francisco J. R. Ruiz
Michalis K. Titsias
taylan. cemgil
Arnaud Doucet
BDL
DRL
12
14
0
05 Oct 2020
MCMC-Interactive Variational Inference
MCMC-Interactive Variational Inference
Quan Zhang
Huangjie Zheng
Mingyuan Zhou
22
1
0
02 Oct 2020
Encoded Prior Sliced Wasserstein AutoEncoder for learning latent
  manifold representations
Encoded Prior Sliced Wasserstein AutoEncoder for learning latent manifold representations
Sanjukta Krishnagopal
J. Bedrossian
DRL
23
0
0
02 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based
  Models
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
16
123
0
01 Oct 2020
f-Divergence Variational Inference
f-Divergence Variational Inference
Neng Wan
Dapeng Li
N. Hovakimyan
10
32
0
28 Sep 2020
Independent finite approximations for Bayesian nonparametric inference
Independent finite approximations for Bayesian nonparametric inference
Tin D. Nguyen
Jonathan H. Huggins
L. Masoero
Lester W. Mackey
Tamara Broderick
TPM
23
4
0
22 Sep 2020
Discond-VAE: Disentangling Continuous Factors from the Discrete
Discond-VAE: Disentangling Continuous Factors from the Discrete
Jaewoong Choi
Geonho Hwang
Myung-joo Kang
CoGe
CML
12
4
0
17 Sep 2020
Variational Deep Learning for the Identification and Reconstruction of
  Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations
Variational Deep Learning for the Identification and Reconstruction of Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations
Duong Nguyen
Said Ouala
Lucas Drumetz
Ronan Fablet
15
13
0
04 Sep 2020
LaDDer: Latent Data Distribution Modelling with a Generative Prior
LaDDer: Latent Data Distribution Modelling with a Generative Prior
Shuyu Lin
R. Clark
DRL
21
4
0
31 Aug 2020
Modulating Scalable Gaussian Processes for Expressive Statistical
  Learning
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
23
4
0
29 Aug 2020
Decoupled Variational Embedding for Signed Directed Networks
Decoupled Variational Embedding for Signed Directed Networks
Xu Chen
Jiangchao Yao
Maosen Li
Ya Zhang
Yanfeng Wang
22
4
0
28 Aug 2020
Learning from Irregularly-Sampled Time Series: A Missing Data
  Perspective
Learning from Irregularly-Sampled Time Series: A Missing Data Perspective
Steven Cheng-Xian Li
Benjamin M. Marlin
AI4TS
25
56
0
17 Aug 2020
Previous
123...789...141516
Next