ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders

Importance Weighted Autoencoders

1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXivPDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 793 papers shown
Title
ZhuSuan: A Library for Bayesian Deep Learning
ZhuSuan: A Library for Bayesian Deep Learning
Jiaxin Shi
Jianfei Chen
Jun Zhu
Shengyang Sun
Yucen Luo
Yihong Gu
Yuhao Zhou
UQCV
BDL
38
43
0
18 Sep 2017
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Yang Li
Quan Pan
Suhang Wang
Haiyun Peng
Tao Yang
Min Zhang
DRL
21
86
0
15 Sep 2017
Meta-Learning MCMC Proposals
Meta-Learning MCMC Proposals
Tongzhou Wang
Yi Wu
David A. Moore
Stuart J. Russell
BDL
26
2
0
21 Aug 2017
Energy-based Models for Video Anomaly Detection
Energy-based Models for Video Anomaly Detection
H. Vu
Dinh Q. Phung
T. Nguyen
Anthony Trevors
Svetha Venkatesh
26
22
0
17 Aug 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GAN
BDL
34
79
0
20 Jul 2017
Guiding InfoGAN with Semi-Supervision
Guiding InfoGAN with Semi-Supervision
Adrian Spurr
Emre Aksan
Otmar Hilliges
GAN
34
46
0
14 Jul 2017
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
GAN
32
27
0
29 Jun 2017
An online sequence-to-sequence model for noisy speech recognition
An online sequence-to-sequence model for noisy speech recognition
Chung-Cheng Chiu
Dieterich Lawson
Yuping Luo
George Tucker
Kevin Swersky
Ilya Sutskever
Navdeep Jaitly
19
7
0
16 Jun 2017
Channel-Recurrent Autoencoding for Image Modeling
Channel-Recurrent Autoencoding for Image Modeling
Wenling Shang
Kihyuk Sohn
Yuandong Tian
DRL
GAN
16
3
0
12 Jun 2017
Tackling Over-pruning in Variational Autoencoders
Tackling Over-pruning in Variational Autoencoders
Serena Yeung
A. Kannan
Yann N. Dauphin
Li Fei-Fei
DRL
22
63
0
09 Jun 2017
Sliced Wasserstein Generative Models
Sliced Wasserstein Generative Models
Jiqing Wu
Zhiwu Huang
Dinesh Acharya
Wen Li
Janine Thoma
Danda Pani Paudel
Luc Van Gool
DiffM
22
0
0
08 Jun 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
49
440
0
07 Jun 2017
DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data
DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data
Swaminathan Gurumurthy
Ravi Kiran Sarvadevabhatla
R. Venkatesh Babu
GAN
30
270
0
07 Jun 2017
On Unifying Deep Generative Models
On Unifying Deep Generative Models
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRL
GAN
41
127
0
02 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
36
359
0
01 Jun 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
30
214
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
24
151
0
29 May 2017
Lifelong Generative Modeling
Lifelong Generative Modeling
Jason Ramapuram
Magda Gregorova
Alexandros Kalousis
BDL
CLL
24
119
0
27 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
Proximity Variational Inference
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
8
21
0
24 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
36
622
0
19 May 2017
Spatial Variational Auto-Encoding via Matrix-Variate Normal
  Distributions
Spatial Variational Auto-Encoding via Matrix-Variate Normal Distributions
Zhengyang Wang
Hao Yuan
Shuiwang Ji
DRL
34
8
0
18 May 2017
Learning Hard Alignments with Variational Inference
Learning Hard Alignments with Variational Inference
Dieterich Lawson
Chung-Cheng Chiu
George Tucker
Colin Raffel
Kevin Swersky
Navdeep Jaitly
DRL
15
29
0
16 May 2017
Learning Multimodal Transition Dynamics for Model-Based Reinforcement
  Learning
Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
OffRL
22
31
0
01 May 2017
Semi-supervised Bayesian Deep Multi-modal Emotion Recognition
Semi-supervised Bayesian Deep Multi-modal Emotion Recognition
Changde Du
Changying Du
Jinpeng Li
Wei-Long Zheng
Bao-Liang Lu
Huiguang He
11
9
0
25 Apr 2017
VAE Learning via Stein Variational Gradient Descent
VAE Learning via Stein Variational Gradient Descent
Yunchen Pu
Zhe Gan
Ricardo Henao
Chunyuan Li
Shaobo Han
Lawrence Carin
DRL
23
6
0
18 Apr 2017
Creativity: Generating Diverse Questions using Variational Autoencoders
Creativity: Generating Diverse Questions using Variational Autoencoders
Unnat Jain
Ziyu Zhang
Alex Schwing
25
152
0
11 Apr 2017
Continuously tempered Hamiltonian Monte Carlo
Continuously tempered Hamiltonian Monte Carlo
Matthew M. Graham
Amos J. Storkey
27
26
0
11 Apr 2017
Reinterpreting Importance-Weighted Autoencoders
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
11
94
0
10 Apr 2017
Learning Approximately Objective Priors
Learning Approximately Objective Priors
Eric T. Nalisnick
Padhraic Smyth
18
11
0
04 Apr 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
23
28
0
03 Apr 2017
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for
  Variational Inference
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
25
196
0
27 Mar 2017
REBAR: Low-variance, unbiased gradient estimates for discrete latent
  variable models
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
George Tucker
A. Mnih
Chris J. Maddison
John Lawson
Jascha Narain Sohl-Dickstein
BDL
47
282
0
21 Mar 2017
Particle Value Functions
Particle Value Functions
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Arnaud Doucet
A. Mnih
Yee Whye Teh
14
15
0
16 Mar 2017
Towards Deeper Understanding of Variational Autoencoding Models
Towards Deeper Understanding of Variational Autoencoding Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
33
155
0
28 Feb 2017
Approximate Inference with Amortised MCMC
Approximate Inference with Amortised MCMC
Yingzhen Li
Richard Turner
Qiang Liu
BDL
22
61
0
27 Feb 2017
Coarse Grained Exponential Variational Autoencoders
Coarse Grained Exponential Variational Autoencoders
Ke Sun
Xiangliang Zhang
DRL
BDL
16
0
0
25 Feb 2017
On the Origin of Deep Learning
On the Origin of Deep Learning
Haohan Wang
Bhiksha Raj
MedIm
3DV
VLM
48
223
0
24 Feb 2017
A Deep Convolutional Auto-Encoder with Pooling - Unpooling Layers in
  Caffe
A Deep Convolutional Auto-Encoder with Pooling - Unpooling Layers in Caffe
V. Turchenko
Eric Chalmers
Artur Luczak
SSL
13
74
0
18 Jan 2017
Image Generation and Editing with Variational Info Generative
  AdversarialNetworks
Image Generation and Editing with Variational Info Generative AdversarialNetworks
Mahesh Gorijala
Ambedkar Dukkipati
GAN
21
15
0
17 Jan 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
36
193
0
13 Jan 2017
An Architecture for Deep, Hierarchical Generative Models
An Architecture for Deep, Hierarchical Generative Models
Philip Bachman
AI4CE
BDL
33
53
0
08 Dec 2016
Fast Adaptation in Generative Models with Generative Matching Networks
Fast Adaptation in Generative Models with Generative Matching Networks
Sergey Bartunov
Dmitry P. Vetrov
GAN
21
23
0
07 Dec 2016
Piecewise Latent Variables for Neural Variational Text Processing
Piecewise Latent Variables for Neural Variational Text Processing
Iulian Serban
Alexander Ororbia
Joelle Pineau
Aaron Courville
DRL
BDL
24
2
0
01 Dec 2016
Improving Variational Auto-Encoders using Householder Flow
Improving Variational Auto-Encoders using Householder Flow
Jakub M. Tomczak
Max Welling
BDL
DRL
37
173
0
29 Nov 2016
Robust Variational Inference
Robust Variational Inference
Michael Figurnov
Kirill Struminsky
Dmitry Vetrov
BDL
DRL
AAML
26
1
0
28 Nov 2016
Bottleneck Conditional Density Estimation
Bottleneck Conditional Density Estimation
Rui Shu
Hung Bui
Mohammad Ghavamzadeh
BDL
16
23
0
25 Nov 2016
Adaptive Feature Abstraction for Translating Video to Text
Adaptive Feature Abstraction for Translating Video to Text
Yunchen Pu
Martin Renqiang Min
Zhe Gan
Lawrence Carin
41
14
0
23 Nov 2016
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Max-Margin Deep Generative Models for (Semi-)Supervised Learning
Chongxuan Li
Jun Zhu
Bo Zhang
AI4CE
32
42
0
22 Nov 2016
Deep Variational Inference Without Pixel-Wise Reconstruction
Deep Variational Inference Without Pixel-Wise Reconstruction
Siddharth Agrawal
Ambedkar Dukkipati
DRL
3DV
BDL
30
13
0
16 Nov 2016
Previous
123...141516
Next