ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08729
6
1

Ensemble Kalman Variational Objectives: Nonlinear Latent Trajectory Inference with A Hybrid of Variational Inference and Ensemble Kalman Filter

17 October 2020
Tsuyoshi Ishizone
T. Higuchi
Kazuyuki Nakamura
    BDL
ArXivPDFHTML
Abstract

Variational inference (VI) combined with Bayesian nonlinear filtering produces state-of-the-art results for latent time-series modeling. A body of recent work has focused on sequential Monte Carlo (SMC) and its variants, e.g., forward filtering backward simulation (FFBSi). Although these studies have succeeded, serious problems remain in particle degeneracy and biased gradient estimators. In this paper, we propose Ensemble Kalman Variational Objective (EnKO), a hybrid method of VI and the ensemble Kalman filter (EnKF), to infer state space models (SSMs). Our proposed method can efficiently identify latent dynamics because of its particle diversity and unbiased gradient estimators. We demonstrate that our EnKO outperforms SMC-based methods in terms of predictive ability and particle efficiency for three benchmark nonlinear system identification tasks.

View on arXiv
Comments on this paper