ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders

Importance Weighted Autoencoders

1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXivPDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 793 papers shown
Title
Deep Latent State Space Models for Time-Series Generation
Deep Latent State Space Models for Time-Series Generation
Linqi Zhou
Michael Poli
Winnie Xu
Stefano Massaroli
Stefano Ermon
BDL
AI4TS
14
34
0
24 Dec 2022
Generalizing Multimodal Variational Methods to Sets
Generalizing Multimodal Variational Methods to Sets
Jinzhao Zhou
Yiqun Duan
Zhihong Chen
Yu-Cheng Chang
Chin-Teng Lin
DRL
50
0
0
19 Dec 2022
Hidden State Approximation in Recurrent Neural Networks Using Continuous
  Particle Filtering
Hidden State Approximation in Recurrent Neural Networks Using Continuous Particle Filtering
Dexun Li
BDL
AI4TS
17
0
0
18 Dec 2022
DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text
  Generation
DuNST: Dual Noisy Self Training for Semi-Supervised Controllable Text Generation
Yuxi Feng
Xiaoyuan Yi
Xiting Wang
L. Lakshmanan
Xing Xie
DiffM
35
5
0
16 Dec 2022
Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve
Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve
Juhan Bae
Michael Ruogu Zhang
Michael Ruan
Eric Wang
S. Hasegawa
Jimmy Ba
Roger C. Grosse
DRL
29
17
0
07 Dec 2022
Explainability as statistical inference
Explainability as statistical inference
Hugo Senetaire
Damien Garreau
J. Frellsen
Pierre-Alexandre Mattei
FAtt
21
4
0
06 Dec 2022
Variational Laplace Autoencoders
Variational Laplace Autoencoders
Yookoon Park
C. Kim
Gunhee Kim
BDL
DRL
26
21
0
30 Nov 2022
Multiple Imputation with Neural Network Gaussian Process for
  High-dimensional Incomplete Data
Multiple Imputation with Neural Network Gaussian Process for High-dimensional Incomplete Data
Zongyu Dai
Zhiqi Bu
Q. Long
35
4
0
23 Nov 2022
Normalizing Flow with Variational Latent Representation
Normalizing Flow with Variational Latent Representation
Hanze Dong
Shizhe Diao
Weizhong Zhang
Tong Zhang
BDL
OOD
DRL
13
0
0
21 Nov 2022
Weighted Ensemble Self-Supervised Learning
Weighted Ensemble Self-Supervised Learning
Yangjun Ruan
Saurabh Singh
Warren Morningstar
Alexander A. Alemi
Sergey Ioffe
Ian S. Fischer
Joshua V. Dillon
FedML
29
15
0
18 Nov 2022
An Overview on Controllable Text Generation via Variational
  Auto-Encoders
An Overview on Controllable Text Generation via Variational Auto-Encoders
Haoqin Tu
Yitong Li
BDL
32
2
0
15 Nov 2022
NEON: Enabling Efficient Support for Nonlinear Operations in Resistive
  RAM-based Neural Network Accelerators
NEON: Enabling Efficient Support for Nonlinear Operations in Resistive RAM-based Neural Network Accelerators
Aditya Manglik
Minesh Patel
Haiyu Mao
Behzad Salami
Jisung Park
Lois Orosa
O. Mutlu
20
1
0
10 Nov 2022
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
36
35
0
07 Nov 2022
Black-box Coreset Variational Inference
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
21
4
0
04 Nov 2022
Circling Back to Recurrent Models of Language
Circling Back to Recurrent Models of Language
Gábor Melis
40
0
0
03 Nov 2022
Improving Variational Autoencoders with Density Gap-based Regularization
Improving Variational Autoencoders with Density Gap-based Regularization
Jianfei Zhang
Jun Bai
Chenghua Lin
Yanmeng Wang
Wenge Rong
DRL
36
4
0
01 Nov 2022
Towards Out-of-Distribution Sequential Event Prediction: A Causal
  Treatment
Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment
Chenxiao Yang
Qitian Wu
Qingsong Wen
Zhiqiang Zhou
Liang Sun
Junchi Yan
OODD
OOD
27
20
0
24 Oct 2022
Functional Indirection Neural Estimator for Better Out-of-distribution
  Generalization
Functional Indirection Neural Estimator for Better Out-of-distribution Generalization
K. Pham
Hung Le
Man Ngo
T. Tran
OODD
33
1
0
23 Oct 2022
Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in
  Transformer-Based Variational AutoEncoder for Diverse Text Generation
Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in Transformer-Based Variational AutoEncoder for Diverse Text Generation
Jinyi Hu
Xiaoyuan Yi
Wenhao Li
Maosong Sun
Xingxu Xie
DRL
27
0
0
22 Oct 2022
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Yohan Jung
Jinkyoo Park
BDL
28
0
0
22 Oct 2022
Break The Spell Of Total Correlation In betaTCVAE
Break The Spell Of Total Correlation In betaTCVAE
Zihao Chen
Qiang Li
Bing Guo
CML
DRL
26
1
0
17 Oct 2022
Alpha-divergence Variational Inference Meets Importance Weighted
  Auto-Encoders: Methodology and Asymptotics
Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders: Methodology and Asymptotics
Kamélia Daudel
Joe Benton
Yuyang Shi
Arnaud Doucet
DRL
19
8
0
12 Oct 2022
Multi-Task Dynamical Systems
Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
Christopher Hawthorne
AI4TS
16
1
0
08 Oct 2022
Latent State Marginalization as a Low-cost Approach for Improving
  Exploration
Latent State Marginalization as a Low-cost Approach for Improving Exploration
Dinghuai Zhang
Aaron Courville
Yoshua Bengio
Qinqing Zheng
Amy Zhang
Ricky T. Q. Chen
OOD
38
9
0
03 Oct 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
136
78
0
02 Oct 2022
Cooperation in the Latent Space: The Benefits of Adding Mixture
  Components in Variational Autoencoders
Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders
Oskar Kviman
Ricky Molén
A. Hotti
Semih Kurt
Victor Elvira
J. Lagergren
32
11
0
30 Sep 2022
Multi-Sample Training for Neural Image Compression
Multi-Sample Training for Neural Image Compression
Tongda Xu
Yan Wang
Dailan He
Chenjian Gao
Han-yi Gao
Kun Liu
Hongwei Qin
34
5
0
28 Sep 2022
Optimization of Annealed Importance Sampling Hyperparameters
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
27
1
0
27 Sep 2022
Tighter Variational Bounds are Not Necessarily Better. A Research Report
  on Implementation, Ablation Study, and Extensions
Tighter Variational Bounds are Not Necessarily Better. A Research Report on Implementation, Ablation Study, and Extensions
Amine MĆharrak
Vít Ruzicka
Sangyun Shin
M. Vankadari
DRL
16
0
0
23 Sep 2022
Variational Open-Domain Question Answering
Variational Open-Domain Question Answering
Valentin Liévin
Andreas Geert Motzfeldt
Ida Riis Jensen
Ole Winther
OOD
BDL
38
8
0
23 Sep 2022
FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image
  Fusion
FusionVAE: A Deep Hierarchical Variational Autoencoder for RGB Image Fusion
Fabian Duffhauss
Ngo Anh Vien
Hanna Ziesche
Gerhard Neumann
38
4
0
22 Sep 2022
Amortized Variational Inference: A Systematic Review
Amortized Variational Inference: A Systematic Review
Ankush Ganguly
Sanjana Jain
Ukrit Watchareeruetai
30
14
0
22 Sep 2022
Continuous Mixtures of Tractable Probabilistic Models
Continuous Mixtures of Tractable Probabilistic Models
Alvaro H. C. Correia
G. Gala
Erik Quaeghebeur
Cassio de Campos
Robert Peharz
TPM
19
18
0
21 Sep 2022
Bit Allocation using Optimization
Bit Allocation using Optimization
Tongda Xu
Han-yi Gao
Chenjian Gao
Yuanyuan Wang
Dailan He
...
Mao Ye
Hongwei Qin
Yan Wang
Jingjing Liu
Ya-Qin Zhang
56
14
0
20 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
37
21
0
15 Sep 2022
Unsupervised representation learning with recognition-parametrised
  probabilistic models
Unsupervised representation learning with recognition-parametrised probabilistic models
William I. Walker
Hugo Soulat
Changmin Yu
M. Sahani
BDL
23
2
0
13 Sep 2022
Unifying Generative Models with GFlowNets and Beyond
Unifying Generative Models with GFlowNets and Beyond
Dinghuai Zhang
Ricky T. Q. Chen
Nikolay Malkin
Yoshua Bengio
BDL
AI4CE
59
25
0
06 Sep 2022
First Hitting Diffusion Models for Generating Manifold, Graph and
  Categorical Data
First Hitting Diffusion Models for Generating Manifold, Graph and Categorical Data
Mao Ye
Lemeng Wu
Qiang Liu
DiffM
21
19
0
02 Sep 2022
Continuous-time Particle Filtering for Latent Stochastic Differential
  Equations
Continuous-time Particle Filtering for Latent Stochastic Differential Equations
Ruizhi Deng
Greg Mori
Andreas M. Lehrmann
BDL
30
0
0
01 Sep 2022
Let us Build Bridges: Understanding and Extending Diffusion Generative
  Models
Let us Build Bridges: Understanding and Extending Diffusion Generative Models
Xingchao Liu
Lemeng Wu
Mao Ye
Qiang Liu
DiffM
34
80
0
31 Aug 2022
Score-Based Diffusion meets Annealed Importance Sampling
Score-Based Diffusion meets Annealed Importance Sampling
Arnaud Doucet
Will Grathwohl
A. G. Matthews
Heiko Strathmann
DiffM
43
43
0
16 Aug 2022
Continual Variational Autoencoder Learning via Online Cooperative
  Memorization
Continual Variational Autoencoder Learning via Online Cooperative Memorization
Fei Ye
A. Bors
CLL
22
17
0
20 Jul 2022
Forget-me-not! Contrastive Critics for Mitigating Posterior Collapse
Forget-me-not! Contrastive Critics for Mitigating Posterior Collapse
Sachit Menon
David M. Blei
Carl Vondrick
DRL
22
6
0
19 Jul 2022
Deeply-Learned Generalized Linear Models with Missing Data
Deeply-Learned Generalized Linear Models with Missing Data
David K. Lim
N. Rashid
Junier B Oliva
J. Ibrahim
AI4CE
29
0
0
18 Jul 2022
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Repairing Systematic Outliers by Learning Clean Subspaces in VAEs
Repairing Systematic Outliers by Learning Clean Subspaces in VAEs
Simao Eduardo
Kai Xu
A. Nazábal
Charles Sutton
DRL
22
0
0
17 Jul 2022
Comparing the latent space of generative models
Comparing the latent space of generative models
Andrea Asperti
Valerio Tonelli
DRL
26
12
0
14 Jul 2022
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
Gabriel Victorino Cardoso
S. Samsonov
Achille Thin
Eric Moulines
Jimmy Olsson
37
6
0
13 Jul 2022
Fuse It More Deeply! A Variational Transformer with Layer-Wise Latent
  Variable Inference for Text Generation
Fuse It More Deeply! A Variational Transformer with Layer-Wise Latent Variable Inference for Text Generation
Jinyi Hu
Xiaoyuan Yi
Wenhao Li
Maosong Sun
Xing Xie
41
21
0
13 Jul 2022
A survey of multimodal deep generative models
A survey of multimodal deep generative models
Masahiro Suzuki
Y. Matsuo
SyDa
DRL
62
76
0
05 Jul 2022
Previous
12345...141516
Next