Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1509.00519
Cited By
Importance Weighted Autoencoders
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Importance Weighted Autoencoders"
50 / 794 papers shown
Title
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
19
31
0
31 Oct 2019
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models
Maksim Kuznetsov
Daniil Polykovskiy
Dmitry Vetrov
Alexander Zhebrak
GAN
24
18
0
29 Oct 2019
Generative Neural Network based Spectrum Sharing using Linear Sum Assignment Problems
A. B. Zaki
J. Huang
Kaishun Wu
B. Elhalawany
22
15
0
12 Oct 2019
R-SQAIR: Relational Sequential Attend, Infer, Repeat
Aleksandar Stanić
Jürgen Schmidhuber
18
30
0
11 Oct 2019
Customizing Sequence Generation with Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
AI4CE
28
11
0
11 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
13
6
0
07 Oct 2019
SCALOR: Generative World Models with Scalable Object Representations
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCL
DRL
46
132
0
06 Oct 2019
Neural Multisensory Scene Inference
Jae Hyun Lim
Pedro H. O. Pinheiro
Negar Rostamzadeh
C. Pal
Sungjin Ahn
22
10
0
06 Oct 2019
Latent-Variable Generative Models for Data-Efficient Text Classification
Xiaoan Ding
Kevin Gimpel
17
6
0
01 Oct 2019
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
24
3
0
30 Sep 2019
On the Importance of the Kullback-Leibler Divergence Term in Variational Autoencoders for Text Generation
Victor Prokhorov
Ehsan Shareghi
Yingzhen Li
Mohammad Taher Pilehvar
Nigel Collier
DRL
25
29
0
30 Sep 2019
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
32
10
0
20 Sep 2019
Select and Attend: Towards Controllable Content Selection in Text Generation
Xiaoyu Shen
Jun Suzuki
Kentaro Inui
Hui Su
Dietrich Klakow
Satoshi Sekine
32
28
0
10 Sep 2019
Learning Priors for Adversarial Autoencoders
Hui-Po Wang
Wen-Hsiao Peng
Wei-Jan Ko
GAN
22
17
0
10 Sep 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
21
15
0
09 Sep 2019
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
Xuezhe Ma
Chunting Zhou
Xian Li
Graham Neubig
Eduard H. Hovy
AI4TS
BDL
11
189
0
05 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
Improving Disentangled Representation Learning with the Beta Bernoulli Process
P. Gyawali
Zhiyuan Li
Cameron Knight
S. Ghimire
B. Horácek
J. Sapp
Linwei Wang
CML
CoGe
DRL
30
12
0
03 Sep 2019
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
Bohan Li
Junxian He
Graham Neubig
Taylor Berg-Kirkpatrick
Yiming Yang
DRL
11
70
0
02 Sep 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGe
DRL
21
93
0
26 Aug 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
Improve variational autoEncoder with auxiliary softmax multiclassifier
Yao Li
DRL
31
0
0
17 Aug 2019
On importance-weighted autoencoders
Axel Finke
Alexandre Hoang Thiery
6
2
0
24 Jul 2019
Noise Contrastive Variational Autoencoders
O. Ganea
Yashas Annadani
Gary Bécigneul
DRL
9
0
0
23 Jul 2019
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
24
23
0
20 Jul 2019
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
Gabriel Loaiza-Ganem
John P. Cunningham
DRL
29
83
0
16 Jul 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
22
9
0
12 Jul 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
13
574
0
10 Jul 2019
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
Augmenting and Tuning Knowledge Graph Embeddings
Robert Bamler
Farnood Salehi
Stephan Mandt
19
7
0
01 Jul 2019
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank Wood
22
48
0
28 Jun 2019
Teaching deep neural networks to localize single molecules for super-resolution microscopy
Artur Speiser
Lucas-Raphael Müller
Ulf Matti
Christopher J. Obara
Wesley R. Legant
Jonas Ries
Jakob H. Macke
Srinivas C. Turaga
18
17
0
27 Jun 2019
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
26
18
0
24 Jun 2019
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
26
123
0
23 Jun 2019
Neural Topographic Factor Analysis for fMRI Data
Eli Sennesh
Zulqarnain Khan
Yiyu Wang
Jennifer Dy
Ajay B. Satpute
J. B. Hutchinson
Jan-Willem van de Meent
26
4
0
21 Jun 2019
Data Interpolating Prediction: Alternative Interpretation of Mixup
Takuya Shimada
Shoichiro Yamaguchi
K. Hayashi
Sosuke Kobayashi
42
7
0
20 Jun 2019
Amortized Bethe Free Energy Minimization for Learning MRFs
Sam Wiseman
Yoon Kim
TPM
DRL
21
11
0
14 Jun 2019
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLM
DRL
16
17
0
13 Jun 2019
Learning Deep Generative Models with Annealed Importance Sampling
Xinqiang Ding
David J. Freedman
VLM
BDL
GAN
28
10
0
12 Jun 2019
Explicit Disentanglement of Appearance and Perspective in Generative Models
N. Detlefsen
Søren Hauberg
CoGe
DRL
30
47
0
11 Jun 2019
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
41
748
0
10 Jun 2019
Note on the bias and variance of variational inference
Chin-Wei Huang
Aaron Courville
6
4
0
09 Jun 2019
Importance Weighted Adversarial Variational Autoencoders for Spike Inference from Calcium Imaging Data
Daniel Jiwoong Im
Sridhama Prakhya
Jinyao Yan
Srinivas C. Turaga
K. Branson
BDL
18
2
0
07 Jun 2019
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,295
0
06 Jun 2019
Improving VAEs' Robustness to Adversarial Attack
M. Willetts
A. Camuto
Tom Rainforth
Stephen J. Roberts
Chris Holmes
DRL
AAML
24
5
0
01 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
38
14
0
31 May 2019
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
16
82
0
30 May 2019
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
19
23
0
28 May 2019
Practical and Consistent Estimation of f-Divergences
Paul Kishan Rubenstein
Olivier Bousquet
Josip Djolonga
C. Riquelme
Ilya O. Tolstikhin
12
44
0
27 May 2019
MaxEntropy Pursuit Variational Inference
Evgenii Egorov
Kirill Neklyudov
R. Kostoev
Evgeny Burnaev
BDL
16
3
0
20 May 2019
Previous
1
2
3
...
10
11
12
...
14
15
16
Next