ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders

Importance Weighted Autoencoders

1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXivPDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 794 papers shown
Title
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
19
31
0
31 Oct 2019
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for
  Generative Models
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models
Maksim Kuznetsov
Daniil Polykovskiy
Dmitry Vetrov
Alexander Zhebrak
GAN
24
18
0
29 Oct 2019
Generative Neural Network based Spectrum Sharing using Linear Sum
  Assignment Problems
Generative Neural Network based Spectrum Sharing using Linear Sum Assignment Problems
A. B. Zaki
J. Huang
Kaishun Wu
B. Elhalawany
22
15
0
12 Oct 2019
R-SQAIR: Relational Sequential Attend, Infer, Repeat
R-SQAIR: Relational Sequential Attend, Infer, Repeat
Aleksandar Stanić
Jürgen Schmidhuber
18
30
0
11 Oct 2019
Customizing Sequence Generation with Multi-Task Dynamical Systems
Customizing Sequence Generation with Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
AI4CE
28
11
0
11 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
13
6
0
07 Oct 2019
SCALOR: Generative World Models with Scalable Object Representations
SCALOR: Generative World Models with Scalable Object Representations
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCL
DRL
46
132
0
06 Oct 2019
Neural Multisensory Scene Inference
Neural Multisensory Scene Inference
Jae Hyun Lim
Pedro H. O. Pinheiro
Negar Rostamzadeh
C. Pal
Sungjin Ahn
22
10
0
06 Oct 2019
Latent-Variable Generative Models for Data-Efficient Text Classification
Latent-Variable Generative Models for Data-Efficient Text Classification
Xiaoan Ding
Kevin Gimpel
17
6
0
01 Oct 2019
Tightening Bounds for Variational Inference by Revisiting Perturbation
  Theory
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
24
3
0
30 Sep 2019
On the Importance of the Kullback-Leibler Divergence Term in Variational
  Autoencoders for Text Generation
On the Importance of the Kullback-Leibler Divergence Term in Variational Autoencoders for Text Generation
Victor Prokhorov
Ehsan Shareghi
Yingzhen Li
Mohammad Taher Pilehvar
Nigel Collier
DRL
25
29
0
30 Sep 2019
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
32
10
0
20 Sep 2019
Select and Attend: Towards Controllable Content Selection in Text
  Generation
Select and Attend: Towards Controllable Content Selection in Text Generation
Xiaoyu Shen
Jun Suzuki
Kentaro Inui
Hui Su
Dietrich Klakow
Satoshi Sekine
32
28
0
10 Sep 2019
Learning Priors for Adversarial Autoencoders
Learning Priors for Adversarial Autoencoders
Hui-Po Wang
Wen-Hsiao Peng
Wei-Jan Ko
GAN
22
17
0
10 Sep 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
21
15
0
09 Sep 2019
FlowSeq: Non-Autoregressive Conditional Sequence Generation with
  Generative Flow
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow
Xuezhe Ma
Chunting Zhou
Xian Li
Graham Neubig
Eduard H. Hovy
AI4TS
BDL
11
189
0
05 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
Improving Disentangled Representation Learning with the Beta Bernoulli
  Process
Improving Disentangled Representation Learning with the Beta Bernoulli Process
P. Gyawali
Zhiyuan Li
Cameron Knight
S. Ghimire
B. Horácek
J. Sapp
Linwei Wang
CML
CoGe
DRL
30
12
0
03 Sep 2019
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
Bohan Li
Junxian He
Graham Neubig
Taylor Berg-Kirkpatrick
Yiming Yang
DRL
11
70
0
02 Sep 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGe
DRL
21
93
0
26 Aug 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
Improve variational autoEncoder with auxiliary softmax multiclassifier
Improve variational autoEncoder with auxiliary softmax multiclassifier
Yao Li
DRL
31
0
0
17 Aug 2019
On importance-weighted autoencoders
On importance-weighted autoencoders
Axel Finke
Alexandre Hoang Thiery
6
2
0
24 Jul 2019
Noise Contrastive Variational Autoencoders
O. Ganea
Yashas Annadani
Gary Bécigneul
DRL
9
0
0
23 Jul 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
24
23
0
20 Jul 2019
The continuous Bernoulli: fixing a pervasive error in variational
  autoencoders
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
Gabriel Loaiza-Ganem
John P. Cunningham
DRL
29
83
0
16 Jul 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Vector Quantized Bayesian Neural Network Inference for Data Streams
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
22
9
0
12 Jul 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
13
574
0
10 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
Augmenting and Tuning Knowledge Graph Embeddings
Augmenting and Tuning Knowledge Graph Embeddings
Robert Bamler
Farnood Salehi
Stephan Mandt
19
7
0
01 Jul 2019
The Thermodynamic Variational Objective
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank Wood
22
48
0
28 Jun 2019
Teaching deep neural networks to localize single molecules for
  super-resolution microscopy
Teaching deep neural networks to localize single molecules for super-resolution microscopy
Artur Speiser
Lucas-Raphael Müller
Ulf Matti
Christopher J. Obara
Wesley R. Legant
Jonas Ries
Jakob H. Macke
Srinivas C. Turaga
18
17
0
27 Jun 2019
Divide and Couple: Using Monte Carlo Variational Objectives for
  Posterior Approximation
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
26
18
0
24 Jun 2019
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
26
123
0
23 Jun 2019
Neural Topographic Factor Analysis for fMRI Data
Neural Topographic Factor Analysis for fMRI Data
Eli Sennesh
Zulqarnain Khan
Yiyu Wang
Jennifer Dy
Ajay B. Satpute
J. B. Hutchinson
Jan-Willem van de Meent
26
4
0
21 Jun 2019
Data Interpolating Prediction: Alternative Interpretation of Mixup
Data Interpolating Prediction: Alternative Interpretation of Mixup
Takuya Shimada
Shoichiro Yamaguchi
K. Hayashi
Sosuke Kobayashi
42
7
0
20 Jun 2019
Amortized Bethe Free Energy Minimization for Learning MRFs
Amortized Bethe Free Energy Minimization for Learning MRFs
Sam Wiseman
Yoon Kim
TPM
DRL
21
11
0
14 Jun 2019
Reweighted Expectation Maximization
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLM
DRL
16
17
0
13 Jun 2019
Learning Deep Generative Models with Annealed Importance Sampling
Learning Deep Generative Models with Annealed Importance Sampling
Xinqiang Ding
David J. Freedman
VLM
BDL
GAN
28
10
0
12 Jun 2019
Explicit Disentanglement of Appearance and Perspective in Generative
  Models
Explicit Disentanglement of Appearance and Perspective in Generative Models
N. Detlefsen
Søren Hauberg
CoGe
DRL
30
47
0
11 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
41
748
0
10 Jun 2019
Note on the bias and variance of variational inference
Note on the bias and variance of variational inference
Chin-Wei Huang
Aaron Courville
6
4
0
09 Jun 2019
Importance Weighted Adversarial Variational Autoencoders for Spike
  Inference from Calcium Imaging Data
Importance Weighted Adversarial Variational Autoencoders for Spike Inference from Calcium Imaging Data
Daniel Jiwoong Im
Sridhama Prakhya
Jinyao Yan
Srinivas C. Turaga
K. Branson
BDL
18
2
0
07 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,295
0
06 Jun 2019
Improving VAEs' Robustness to Adversarial Attack
Improving VAEs' Robustness to Adversarial Attack
M. Willetts
A. Camuto
Tom Rainforth
Stephen J. Roberts
Chris Holmes
DRL
AAML
24
5
0
01 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
38
14
0
31 May 2019
Particle Filter Recurrent Neural Networks
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
16
82
0
30 May 2019
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear
  Dynamical Systems
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
19
23
0
28 May 2019
Practical and Consistent Estimation of f-Divergences
Practical and Consistent Estimation of f-Divergences
Paul Kishan Rubenstein
Olivier Bousquet
Josip Djolonga
C. Riquelme
Ilya O. Tolstikhin
12
44
0
27 May 2019
MaxEntropy Pursuit Variational Inference
MaxEntropy Pursuit Variational Inference
Evgenii Egorov
Kirill Neklyudov
R. Kostoev
Evgeny Burnaev
BDL
16
3
0
20 May 2019
Previous
123...101112...141516
Next