ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders

Importance Weighted Autoencoders

1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXivPDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 794 papers shown
Title
Unpacking Information Bottlenecks: Unifying Information-Theoretic
  Objectives in Deep Learning
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
27
16
0
27 Mar 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
Social Navigation with Human Empowerment driven Deep Reinforcement
  Learning
Social Navigation with Human Empowerment driven Deep Reinforcement Learning
T. V. D. Heiden
Christian Weiss
H. V. Hoof
19
13
0
18 Mar 2020
Autoencoders
Autoencoders
Dor Bank
Noam Koenigstein
Raja Giryes
HAI
13
0
0
12 Mar 2020
VMLoc: Variational Fusion For Learning-Based Multimodal Camera
  Localization
VMLoc: Variational Fusion For Learning-Based Multimodal Camera Localization
Kaichen Zhou
Changhao Chen
Bing Wang
Muhamad Risqi U. Saputra
Niki Trigoni
Andrew Markham
13
20
0
12 Mar 2020
Variational Learning of Individual Survival Distributions
Variational Learning of Individual Survival Distributions
Zidi Xiu
Chenyang Tao
Benjamin A. Goldstein
Ricardo Henao
OOD
8
15
0
09 Mar 2020
Scalable Approximate Inference and Some Applications
Scalable Approximate Inference and Some Applications
Jun Han
BDL
27
1
0
07 Mar 2020
Likelihood Regret: An Out-of-Distribution Detection Score For
  Variational Auto-encoder
Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder
Zhisheng Xiao
Qing Yan
Y. Amit
OODD
20
189
0
06 Mar 2020
Automatic Differentiation Variational Inference with Mixtures
Automatic Differentiation Variational Inference with Mixtures
Warren Morningstar
Sharad M. Vikram
Cusuh Ham
Andrew Gallagher
Joshua V. Dillon
DRL
BDL
20
20
0
03 Mar 2020
Curriculum By Smoothing
Curriculum By Smoothing
Samarth Sinha
Animesh Garg
Hugo Larochelle
11
7
0
03 Mar 2020
Predictive Coding for Locally-Linear Control
Predictive Coding for Locally-Linear Control
Rui Shu
Tung D. Nguyen
Yinlam Chow
Tu Pham
Khoat Than
Mohammad Ghavamzadeh
Stefano Ermon
Hung Bui
OffRL
BDL
44
24
0
02 Mar 2020
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Ruizhi Deng
B. Chang
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
25
50
0
24 Feb 2020
Variational Hyper RNN for Sequence Modeling
Variational Hyper RNN for Sequence Modeling
Ruizhi Deng
Yanshuai Cao
B. Chang
Leonid Sigal
Greg Mori
Marcus A. Brubaker
BDL
DRL
20
2
0
24 Feb 2020
Variance Loss in Variational Autoencoders
Variance Loss in Variational Autoencoders
Andrea Asperti
DRL
27
14
0
23 Feb 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
Balancing reconstruction error and Kullback-Leibler divergence in
  Variational Autoencoders
Balancing reconstruction error and Kullback-Leibler divergence in Variational Autoencoders
Andrea Asperti
Matteo Trentin
DRL
27
96
0
18 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
42
10,591
0
17 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Latent Variable Modelling with Hyperbolic Normalizing Flows
Latent Variable Modelling with Hyperbolic Normalizing Flows
A. Bose
Ariella Smofsky
Renjie Liao
Prakash Panangaden
William L. Hamilton
DRL
19
67
0
15 Feb 2020
Stochastic Approximate Gradient Descent via the Langevin Algorithm
Stochastic Approximate Gradient Descent via the Langevin Algorithm
Yixuan Qiu
Tianlin Li
22
4
0
13 Feb 2020
Deep Learning for Source Code Modeling and Generation: Models,
  Applications and Challenges
Deep Learning for Source Code Modeling and Generation: Models, Applications and Challenges
T. H. Le
Hao Chen
Muhammad Ali Babar
VLM
64
152
0
13 Feb 2020
Learning Flat Latent Manifolds with VAEs
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
37
39
0
12 Feb 2020
Missing Data Imputation using Optimal Transport
Missing Data Imputation using Optimal Transport
Boris Muzellec
Julie Josse
Claire Boyer
Marco Cuturi
OT
28
116
0
10 Feb 2020
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Didrik Nielsen
Ole Winther
MQ
201
13
0
06 Feb 2020
Learning Discrete Distributions by Dequantization
Learning Discrete Distributions by Dequantization
Emiel Hoogeboom
Taco S. Cohen
Jakub M. Tomczak
DRL
34
31
0
30 Jan 2020
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor
  Analysis
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
BDL
12
33
0
22 Jan 2020
Joint Distributions for TensorFlow Probability
Joint Distributions for TensorFlow Probability
Dan Piponi
Dave Moore
Joshua V. Dillon
GP
27
16
0
22 Jan 2020
Approximating Activation Functions
Approximating Activation Functions
Nicholas Gerard Timmons
Andrew Rice
25
14
0
17 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
Invertible Generative Modeling using Linear Rational Splines
H. M. Dolatabadi
S. Erfani
C. Leckie
40
65
0
15 Jan 2020
Efficient Debiased Evidence Estimation by Multilevel Monte Carlo
  Sampling
Efficient Debiased Evidence Estimation by Multilevel Monte Carlo Sampling
Kei Ishikawa
T. Goda
8
2
0
14 Jan 2020
AE-OT-GAN: Training GANs from data specific latent distribution
AE-OT-GAN: Training GANs from data specific latent distribution
Dongsheng An
Yang Guo
Min Zhang
Xin Qi
Na Lei
S. Yau
X. Gu
DRL
GAN
32
24
0
11 Jan 2020
A Neural Dirichlet Process Mixture Model for Task-Free Continual
  Learning
A Neural Dirichlet Process Mixture Model for Task-Free Continual Learning
Soochan Lee
Junsoo Ha
Dongsu Zhang
Gunhee Kim
BDL
CLL
25
210
0
03 Jan 2020
Hierarchical Variational Imitation Learning of Control Programs
Hierarchical Variational Imitation Learning of Control Programs
Roy Fox
Richard Shin
William Paul
Yitian Zou
D. Song
Ken Goldberg
Pieter Abbeel
Ion Stoica
BDL
22
4
0
29 Dec 2019
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
26
75
0
23 Dec 2019
Multilevel Monte Carlo estimation of log marginal likelihood
Multilevel Monte Carlo estimation of log marginal likelihood
T. Goda
Kei Ishikawa
20
3
0
23 Dec 2019
Learning Representations by Maximizing Mutual Information in Variational
  Autoencoders
Learning Representations by Maximizing Mutual Information in Variational Autoencoders
Ali Lotfi-Rezaabad
S. Vishwanath
DRL
SSL
22
39
0
21 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
Gabriel Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
18
63
0
11 Dec 2019
Neural Networks with Cheap Differential Operators
Neural Networks with Cheap Differential Operators
Ricky T. Q. Chen
David Duvenaud
20
34
0
08 Dec 2019
Stochastic Variational Inference via Upper Bound
Stochastic Variational Inference via Upper Bound
Chunlin Ji
Haige Shen
UQCV
BDL
26
11
0
02 Dec 2019
Improving VAE generations of multimodal data through data-dependent
  conditional priors
Improving VAE generations of multimodal data through data-dependent conditional priors
Frantzeska Lavda
Magda Gregorova
Alexandros Kalousis
8
4
0
25 Nov 2019
Mixed-curvature Variational Autoencoders
Mixed-curvature Variational Autoencoders
Ondrej Skopek
O. Ganea
Gary Bécigneul
CML
DRL
BDL
30
101
0
19 Nov 2019
Deep Verifier Networks: Verification of Deep Discriminative Models with
  Deep Generative Models
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
Tong Che
Xiaofeng Liu
Site Li
Yubin Ge
Ruixiang Zhang
Caiming Xiong
Yoshua Bengio
38
52
0
18 Nov 2019
Rate-Regularization and Generalization in VAEs
Rate-Regularization and Generalization in VAEs
Alican Bozkurt
Babak Esmaeili
Jean-Baptiste Tristan
Dana H. Brooks
Jennifer G. Dy
Jan-Willem van de Meent
DRL
38
7
0
11 Nov 2019
On Posterior Collapse and Encoder Feature Dispersion in Sequence VAEs
On Posterior Collapse and Encoder Feature Dispersion in Sequence VAEs
Teng Long
Yanshuai Cao
Jackie C.K. Cheung
22
6
0
10 Nov 2019
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep
  Generative Models
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
32
266
0
08 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
25
7
0
04 Nov 2019
Multiple Futures Prediction
Multiple Futures Prediction
Yichuan Tang
Ruslan Salakhutdinov
39
348
0
04 Nov 2019
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal
  Experiments
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments
Adam Foster
M. Jankowiak
M. O'Meara
Yee Whye Teh
Tom Rainforth
BDL
24
59
0
01 Nov 2019
Continual Unsupervised Representation Learning
Continual Unsupervised Representation Learning
Dushyant Rao
Francesco Visin
Andrei A. Rusu
Yee Whye Teh
Razvan Pascanu
R. Hadsell
BDL
CLL
SSL
DRL
6
256
0
31 Oct 2019
Previous
123...91011...141516
Next