Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.02557
Cited By
Variational Dropout and the Local Reparameterization Trick
8 June 2015
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Dropout and the Local Reparameterization Trick"
38 / 288 papers shown
Title
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
26
6
0
19 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
Real-Time Prediction of the Duration of Distribution System Outages
Aaron Jaech
Baosen Zhang
Mari Ostendorf
D. Kirschen
16
74
0
03 Apr 2018
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
28
433
0
03 Apr 2018
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen
Paul Vicol
Jimmy Ba
Dustin Tran
Roger C. Grosse
BDL
22
307
0
12 Mar 2018
Variance Networks: When Expectation Does Not Meet Your Expectations
Kirill Neklyudov
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
UQCV
18
23
0
10 Mar 2018
Synthesizing Neural Network Controllers with Probabilistic Model based Reinforcement Learning
J. A. G. Higuera
D. Meger
Gregory Dudek
BDL
22
39
0
06 Mar 2018
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UD
BDL
EDL
UQCV
PER
30
898
0
28 Feb 2018
Compressing Neural Networks using the Variational Information Bottleneck
Bin Dai
Chen Zhu
David Wipf
MLT
26
178
0
28 Feb 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
41
365
0
26 Feb 2018
Bayesian Incremental Learning for Deep Neural Networks
Max Kochurov
T. Garipov
D. Podoprikhin
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
OOD
CLL
BDL
15
22
0
20 Feb 2018
Uncertainty Estimation via Stochastic Batch Normalization
Andrei Atanov
Arsenii Ashukha
Dmitry Molchanov
Kirill Neklyudov
Dmitry Vetrov
UQCV
BDL
37
47
0
13 Feb 2018
Boundary Optimizing Network (BON)
Marco Singh
A. Pai
22
0
0
08 Jan 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
30
144
0
26 Dec 2017
Convergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks
Ziming Zhang
M. Brand
26
70
0
20 Nov 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory
Ron Amit
Ron Meir
BDL
MLT
32
173
0
03 Nov 2017
Learning Discrete Weights Using the Local Reparameterization Trick
Oran Shayer
Dan Levi
Ethan Fetaya
21
88
0
21 Oct 2017
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Jonghwan Mun
Bohyung Han
NoLa
29
197
0
14 Oct 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
39
415
0
24 May 2017
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
23
479
0
24 May 2017
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDL
UQCV
45
585
0
22 May 2017
Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution
Ryutaro Tanno
Daniel E. Worrall
Aurobrata Ghosh
Enrico Kaden
S. Sotiropoulos
A. Criminisi
Daniel C. Alexander
UQCV
DiffM
MedIm
SupR
25
153
0
01 May 2017
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
27
153
0
17 Apr 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
21
454
0
06 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Known Unknowns: Uncertainty Quality in Bayesian Neural Networks
Ramon Oliveira
Pedro Tabacof
Eduardo Valle
BDL
UQCV
20
7
0
05 Dec 2016
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
53
41
0
23 Nov 2016
Robustly representing uncertainty in deep neural networks through sampling
Patrick McClure
N. Kriegeskorte
UQCV
BDL
OOD
31
15
0
05 Nov 2016
Regularization for Unsupervised Deep Neural Nets
Baiyang Wang
Diego Klabjan
BDL
23
25
0
15 Aug 2016
Fast
ε
ε
ε
-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
32
158
0
20 May 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
33
253
0
15 Mar 2016
Improved Dropout for Shallow and Deep Learning
Zhe Li
Boqing Gong
Tianbao Yang
BDL
SyDa
30
79
0
06 Feb 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
27
320
0
23 Dec 2015
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks
Y. Gal
Zoubin Ghahramani
UQCV
DRL
BDL
22
1,642
0
16 Dec 2015
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,638
0
03 Jul 2012
Previous
1
2
3
4
5
6