ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02557
  4. Cited By
Variational Dropout and the Local Reparameterization Trick

Variational Dropout and the Local Reparameterization Trick

8 June 2015
Diederik P. Kingma
Tim Salimans
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Variational Dropout and the Local Reparameterization Trick"

50 / 286 papers shown
Title
Operation-Aware Soft Channel Pruning using Differentiable Masks
Operation-Aware Soft Channel Pruning using Differentiable Masks
Minsoo Kang
Bohyung Han
AAML
35
138
0
08 Jul 2020
Improving Calibration through the Relationship with Adversarial
  Robustness
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
40
25
0
29 Jun 2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
  Higher-Order Influence Functions
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa
M. Schaar
UD
UQCV
BDL
TDI
21
53
0
29 Jun 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCV
BDL
OOD
28
38
0
26 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
35
199
0
22 Jun 2020
Gradient-EM Bayesian Meta-learning
Gradient-EM Bayesian Meta-learning
Yayi Zou
Xiaoqi Lu
BDL
33
16
0
21 Jun 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information
  Form
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
38
46
0
20 Jun 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDL
UQCV
32
18
0
20 Jun 2020
Towards Adaptive Benthic Habitat Mapping
Towards Adaptive Benthic Habitat Mapping
J. Shields
Oscar Pizarro
Stefan B. Williams
16
14
0
20 Jun 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
  Neural Networks
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
27
31
0
16 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
41
100
0
15 Jun 2020
Detecting unusual input to neural networks
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
17
7
0
15 Jun 2020
PatchUp: A Feature-Space Block-Level Regularization Technique for
  Convolutional Neural Networks
PatchUp: A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks
Mojtaba Faramarzi
Mohammad Amini
Akilesh Badrinaaraayanan
Vikas Verma
A. Chandar
AAML
34
31
0
14 Jun 2020
Uncertainty-Aware Deep Classifiers using Generative Models
Uncertainty-Aware Deep Classifiers using Generative Models
Murat Sensoy
Lance M. Kaplan
Federico Cerutti
Maryam Saleki
UQCV
OOD
20
73
0
07 Jun 2020
An Overview of Neural Network Compression
An Overview of Neural Network Compression
James OÑeill
AI4CE
45
98
0
05 Jun 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
32
7
0
05 Jun 2020
Gradient Monitored Reinforcement Learning
Gradient Monitored Reinforcement Learning
Mohammed Sharafath Abdul Hameed
Gavneet Singh Chadha
Andreas Schwung
S. Ding
33
10
0
25 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
TraDE: Transformers for Density Estimation
TraDE: Transformers for Density Estimation
Rasool Fakoor
Pratik Chaudhari
Jonas W. Mueller
Alex Smola
20
30
0
06 Apr 2020
On Calibration of Mixup Training for Deep Neural Networks
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
30
6
0
22 Mar 2020
The Variational InfoMax Learning Objective
The Variational InfoMax Learning Objective
Vincenzo Crescimanna
Bruce P. Graham
16
0
0
07 Mar 2020
Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
  Networks
Beyond Dropout: Feature Map Distortion to Regularize Deep Neural Networks
Yehui Tang
Yunhe Wang
Yixing Xu
Boxin Shi
Chao Xu
Chunjing Xu
Chang Xu
17
38
0
23 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
25
58
0
19 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
33
314
0
15 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
27
15
0
11 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
Resource-Efficient Neural Networks for Embedded Systems
Resource-Efficient Neural Networks for Embedded Systems
Wolfgang Roth
Günther Schindler
Lukas Pfeifenberger
Robert Peharz
Sebastian Tschiatschek
Holger Fröning
Franz Pernkopf
Zoubin Ghahramani
34
47
0
07 Jan 2020
Improving Polyphonic Music Models with Feature-Rich Encoding
Improving Polyphonic Music Models with Feature-Rich Encoding
Omar Peracha
32
12
0
26 Nov 2019
IPOD: An Industrial and Professional Occupations Dataset and its
  Applications to Occupational Data Mining and Analysis
IPOD: An Industrial and Professional Occupations Dataset and its Applications to Occupational Data Mining and Analysis
Junhua Liu
Yung Chuen Ng
Kristin L. Wood
Kwan Hui Lim
22
6
0
22 Oct 2019
Kernelized Wasserstein Natural Gradient
Kernelized Wasserstein Natural Gradient
Michael Arbel
Arthur Gretton
Wuchen Li
Guido Montúfar
18
22
0
21 Oct 2019
Natural Question Generation with Reinforcement Learning Based
  Graph-to-Sequence Model
Natural Question Generation with Reinforcement Learning Based Graph-to-Sequence Model
Yu Chen
Lingfei Wu
Mohammed J Zaki
19
11
0
19 Oct 2019
Action Anticipation for Collaborative Environments: The Impact of
  Contextual Information and Uncertainty-Based Prediction
Action Anticipation for Collaborative Environments: The Impact of Contextual Information and Uncertainty-Based Prediction
Clebeson Canuto dos Santos
Plinio Moreno
J. L. A. Samatelo
R. Vassallo
J. Santos-Victor
22
7
0
01 Oct 2019
Mixout: Effective Regularization to Finetune Large-scale Pretrained
  Language Models
Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models
Cheolhyoung Lee
Kyunghyun Cho
Wanmo Kang
MoE
249
205
0
25 Sep 2019
Image Captioning with Sparse Recurrent Neural Network
Image Captioning with Sparse Recurrent Neural Network
J. Tan
Chee Seng Chan
Joon Huang Chuah
VLM
29
6
0
28 Aug 2019
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
32
14
0
26 Aug 2019
A Kings Ransom for Encryption: Ransomware Classification using Augmented
  One-Shot Learning and Bayesian Approximation
A Kings Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation
Amir Atapour-Abarghouei
Stephen Bonner
A. Mcgough
29
7
0
19 Aug 2019
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adaptative Inference Cost With Convolutional Neural Mixture Models
Adria Ruiz
Jakob Verbeek
VLM
30
22
0
19 Aug 2019
Bayesian Generative Models for Knowledge Transfer in MRI Semantic
  Segmentation Problems
Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems
Anna Kuzina
Evgenii Egorov
Evgeny Burnaev
MedIm
29
19
0
15 Aug 2019
Reinforcement Learning Based Graph-to-Sequence Model for Natural
  Question Generation
Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation
Yu Chen
Lingfei Wu
Mohammed J Zaki
GNN
17
153
0
14 Aug 2019
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
Simon Wiedemann
H. Kirchhoffer
Stefan Matlage
Paul Haase
Arturo Marbán
...
Ahmed Osman
D. Marpe
H. Schwarz
Thomas Wiegand
Wojciech Samek
49
92
0
27 Jul 2019
Adaptive Regularization via Residual Smoothing in Deep Learning
  Optimization
Adaptive Regularization via Residual Smoothing in Deep Learning Optimization
Jung-Kyun Cho
Junseok Kwon
Byung-Woo Hong
31
1
0
23 Jul 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
142
0
17 Jul 2019
Supervised Uncertainty Quantification for Segmentation with Multiple
  Annotations
Supervised Uncertainty Quantification for Segmentation with Multiple Annotations
Shi Hu
Daniel E. Worrall
Stefan Knegt
Bastiaan S. Veeling
Henkjan Huisman
Max Welling
UQCV
16
94
0
03 Jul 2019
Deep Active Learning with Adaptive Acquisition
Deep Active Learning with Adaptive Acquisition
Manuel Haussmann
Fred Hamprecht
M. Kandemir
22
41
0
27 Jun 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
27
8
0
10 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
29
1,658
0
06 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
56
240
0
06 Jun 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
19
5
0
29 May 2019
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained
  Microcontrollers
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers
Igor Fedorov
Ryan P. Adams
Matthew Mattina
P. Whatmough
13
164
0
28 May 2019
Previous
123456
Next