ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.08040
32
55

Unsupervised Deep Learning Methods for Biological Image Reconstruction and Enhancement

17 May 2021
Mehmet Akccakaya
Burhaneddin Yaman
Hyungjin Chung
Jong Chul Ye
    MedIm
ArXivPDFHTML
Abstract

Recently, deep learning approaches have become the main research frontier for biological image reconstruction and enhancement problems thanks to their high performance, along with their ultra-fast inference times. However, due to the difficulty of obtaining matched reference data for supervised learning, there has been increasing interest in unsupervised learning approaches that do not need paired reference data. In particular, self-supervised learning and generative models have been successfully used for various biological imaging applications. In this paper, we overview these approaches from a coherent perspective in the context of classical inverse problems, and discuss their applications to biological imaging, including electron, fluorescence and deconvolution microscopy, optical diffraction tomography and functional neuroimaging.

View on arXiv
Comments on this paper