ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational Inference with Normalizing Flows"

47 / 847 papers shown
Title
Learnable Explicit Density for Continuous Latent Space and Variational
  Inference
Learnable Explicit Density for Continuous Latent Space and Variational Inference
Chin-Wei Huang
Ahmed Touati
Laurent Dinh
M. Drozdzal
Mohammad Havaei
Laurent Charlin
Aaron Courville
BDL
DRL
33
28
0
06 Oct 2017
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Yang Li
Quan Pan
Suhang Wang
Haiyun Peng
Tao Yang
Min Zhang
DRL
21
86
0
15 Sep 2017
Symmetric Variational Autoencoder and Connections to Adversarial
  Learning
Symmetric Variational Autoencoder and Connections to Adversarial Learning
Liqun Chen
Shuyang Dai
Yunchen Pu
Chunyuan Li
Weiyao Wang
Lawrence Carin
DRL
GAN
38
70
0
06 Sep 2017
Unsupervised Generative Modeling Using Matrix Product States
Unsupervised Generative Modeling Using Matrix Product States
Zhaoyu Han
Jun Wang
H. Fan
Lei Wang
Pan Zhang
24
268
0
06 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
46
57
0
04 Sep 2017
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
GAN
32
27
0
29 Jun 2017
Kernel Implicit Variational Inference
Kernel Implicit Variational Inference
Jiaxin Shi
Shengyang Sun
Jun Zhu
BDL
29
3
0
29 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
Proximity Variational Inference
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
8
21
0
24 May 2017
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in
  Generative Models
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models
Aditya Grover
Manik Dhar
Stefano Ermon
GAN
39
24
0
24 May 2017
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
69
728
0
24 May 2017
Reducing Reparameterization Gradient Variance
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
27
84
0
22 May 2017
Gradient Estimators for Implicit Models
Gradient Estimators for Implicit Models
Yingzhen Li
Richard Turner
35
104
0
19 May 2017
Stein Variational Adaptive Importance Sampling
Stein Variational Adaptive Importance Sampling
J. Han
Qiang Liu
24
28
0
18 Apr 2017
Reinterpreting Importance-Weighted Autoencoders
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
11
94
0
10 Apr 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
23
28
0
03 Apr 2017
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for
  Variational Inference
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
BDL
25
196
0
27 Mar 2017
Inference via low-dimensional couplings
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
40
119
0
17 Mar 2017
Sharp Minima Can Generalize For Deep Nets
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
46
757
0
15 Mar 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
21
454
0
06 Mar 2017
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Hierarchical Implicit Models and Likelihood-Free Variational Inference
Dustin Tran
Rajesh Ranganath
David M. Blei
VLM
GAN
30
100
0
28 Feb 2017
Improved Variational Autoencoders for Text Modeling using Dilated
  Convolutions
Improved Variational Autoencoders for Text Modeling using Dilated Convolutions
Zichao Yang
Zhiting Hu
Ruslan Salakhutdinov
Taylor Berg-Kirkpatrick
24
383
0
27 Feb 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
49
525
0
17 Jan 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
36
193
0
13 Jan 2017
Two Methods For Wild Variational Inference
Two Methods For Wild Variational Inference
Qiang Liu
Yihao Feng
BDL
32
19
0
30 Nov 2016
Deep Variational Inference Without Pixel-Wise Reconstruction
Deep Variational Inference Without Pixel-Wise Reconstruction
Siddharth Agrawal
Ambedkar Dukkipati
DRL
3DV
BDL
30
13
0
16 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
38
118
0
06 Nov 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
16
452
0
30 Sep 2016
Variational Inference with Hamiltonian Monte Carlo
Variational Inference with Hamiltonian Monte Carlo
Christopher Wolf
Maximilian Karl
Patrick van der Smagt
BDL
23
37
0
26 Sep 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,069
0
16 Aug 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
55
1,797
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
97
3,647
0
26 May 2016
Gaussian variational approximation with sparse precision matrices
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
30
76
0
18 May 2016
One-Shot Generalization in Deep Generative Models
One-Shot Generalization in Deep Generative Models
Danilo Jimenez Rezende
S. Mohamed
Ivo Danihelka
Karol Gregor
Daan Wierstra
BDL
VLM
DRL
LRM
30
254
0
16 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
38
709
0
02 Mar 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
52
288
0
22 Feb 2016
Black box variational inference for state space models
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
26
160
0
23 Nov 2015
The Variational Gaussian Process
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
29
184
0
20 Nov 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
34
2,341
0
19 Nov 2015
Super-Resolution with Deep Convolutional Sufficient Statistics
Super-Resolution with Deep Convolutional Sufficient Statistics
Joan Bruna
Pablo Sprechmann
Yann LeCun
SupR
25
323
0
18 Nov 2015
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
19
370
0
16 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
23
335
0
07 Nov 2015
Stochastic gradient descent methods for estimation with large data sets
Stochastic gradient descent methods for estimation with large data sets
Dustin Tran
Panos Toulis
E. Airoldi
12
14
0
22 Sep 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
13
1,236
0
01 Sep 2015
Data Generation as Sequential Decision Making
Data Generation as Sequential Decision Making
Philip Bachman
Doina Precup
22
57
0
10 Jun 2015
Previous
123...151617