ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 933 papers shown
Title
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
25
30
0
01 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
181
0
30 May 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
35
121
0
28 May 2018
Flexible and accurate inference and learning for deep generative models
Flexible and accurate inference and learning for deep generative models
Eszter Vértes
M. Sahani
SyDa
BDL
13
44
0
28 May 2018
A Stochastic Decoder for Neural Machine Translation
A Stochastic Decoder for Neural Machine Translation
P. Schulz
Wilker Aziz
Trevor Cohn
BDL
30
29
0
28 May 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Conditional Inference in Pre-trained Variational Autoencoders via
  Cross-coding
Conditional Inference in Pre-trained Variational Autoencoders via Cross-coding
Ga Wu
Justin Domke
Scott Sanner
BDL
DRL
27
11
0
20 May 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by
  Variance Backpropagation
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
28
6
0
19 May 2018
Learning 3D Shape Completion under Weak Supervision
Learning 3D Shape Completion under Weak Supervision
David Stutz
Andreas Geiger
3DPC
SSL
35
106
0
18 May 2018
The Blessings of Multiple Causes
The Blessings of Multiple Causes
Yixin Wang
David M. Blei
AI4CE
CML
24
284
0
17 May 2018
Variational Inference In Pachinko Allocation Machines
Variational Inference In Pachinko Allocation Machines
Akash Srivastava
Charles Sutton
23
6
0
21 Apr 2018
Training VAEs Under Structured Residuals
Training VAEs Under Structured Residuals
Garoe Dorta
Sara Vicente
Lourdes Agapito
Neill D. F. Campbell
Ivor J. A. Simpson
BDL
DRL
24
12
0
03 Apr 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
31
433
0
03 Apr 2018
Probabilistic Video Generation using Holistic Attribute Control
Probabilistic Video Generation using Holistic Attribute Control
Jiawei He
Andreas M. Lehrmann
Joseph Marino
Greg Mori
Leonid Sigal
VGen
DiffM
DRL
22
77
0
21 Mar 2018
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Generating Multi-Agent Trajectories using Programmatic Weak Supervision
Eric Zhan
Stephan Zheng
Yisong Yue
Long Sha
P. Lucey
25
88
0
20 Mar 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
18
249
0
15 Mar 2018
BRUNO: A Deep Recurrent Model for Exchangeable Data
BRUNO: A Deep Recurrent Model for Exchangeable Data
I. Korshunova
Jonas Degrave
Ferenc Huszár
Y. Gal
Arthur Gretton
J. Dambre
BDL
24
33
0
21 Feb 2018
Bayesian Incremental Learning for Deep Neural Networks
Bayesian Incremental Learning for Deep Neural Networks
Max Kochurov
T. Garipov
D. Podoprikhin
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
OOD
CLL
BDL
15
22
0
20 Feb 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
28
197
0
13 Feb 2018
Black-box Variational Inference for Stochastic Differential Equations
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
22
57
0
09 Feb 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
37
125
0
08 Feb 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
33
243
0
07 Feb 2018
Improving Variational Encoder-Decoders in Dialogue Generation
Improving Variational Encoder-Decoders in Dialogue Generation
Xiaoyu Shen
Hui Su
Shuzi Niu
Vera Demberg
DRL
32
99
0
06 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRL
BDL
33
280
0
10 Jan 2018
Deep generative models of genetic variation capture mutation effects
Deep generative models of genetic variation capture mutation effects
Adam J. Riesselman
John Ingraham
D. Marks
DRL
BDL
21
23
0
18 Dec 2017
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
51
46
0
01 Dec 2017
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
38
856
0
28 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Adversarial Symmetric Variational Autoencoder
Adversarial Symmetric Variational Autoencoder
Yunchen Pu
Weiyao Wang
Ricardo Henao
Liqun Chen
Zhe Gan
Chunyuan Li
Lawrence Carin
DRL
GAN
42
78
0
14 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
67
4,848
0
02 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRL
BDL
39
80
0
01 Nov 2017
Learnable Explicit Density for Continuous Latent Space and Variational
  Inference
Learnable Explicit Density for Continuous Latent Space and Variational Inference
Chin-Wei Huang
Ahmed Touati
Laurent Dinh
M. Drozdzal
Mohammad Havaei
Laurent Charlin
Aaron Courville
BDL
DRL
45
28
0
06 Oct 2017
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Yang Li
Quan Pan
Suhang Wang
Haiyun Peng
Tao Yang
Min Zhang
DRL
21
86
0
15 Sep 2017
Symmetric Variational Autoencoder and Connections to Adversarial
  Learning
Symmetric Variational Autoencoder and Connections to Adversarial Learning
Liqun Chen
Shuyang Dai
Yunchen Pu
Chunyuan Li
Weiyao Wang
Lawrence Carin
DRL
GAN
38
70
0
06 Sep 2017
Unsupervised Generative Modeling Using Matrix Product States
Unsupervised Generative Modeling Using Matrix Product States
Zhaoyu Han
Jun Wang
H. Fan
Lei Wang
Pan Zhang
27
268
0
06 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
48
57
0
04 Sep 2017
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
GAN
32
27
0
29 Jun 2017
A-NICE-MC: Adversarial Training for MCMC
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDL
OOD
32
109
0
23 Jun 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
35
214
0
31 May 2017
Kernel Implicit Variational Inference
Kernel Implicit Variational Inference
Jiaxin Shi
Shengyang Sun
Jun Zhu
BDL
40
3
0
29 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
Proximity Variational Inference
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
10
21
0
24 May 2017
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in
  Generative Models
Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models
Aditya Grover
Manik Dhar
Stefano Ermon
GAN
39
24
0
24 May 2017
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
69
732
0
24 May 2017
Reducing Reparameterization Gradient Variance
Reducing Reparameterization Gradient Variance
Andrew C. Miller
N. Foti
Alexander DÁmour
Ryan P. Adams
30
84
0
22 May 2017
Gradient Estimators for Implicit Models
Gradient Estimators for Implicit Models
Yingzhen Li
Richard Turner
35
104
0
19 May 2017
Stein Variational Adaptive Importance Sampling
Stein Variational Adaptive Importance Sampling
J. Han
Qiang Liu
24
28
0
18 Apr 2017
$k$-means as a variational EM approximation of Gaussian mixture models
kkk-means as a variational EM approximation of Gaussian mixture models
Jörg Lücke
D. Forster
DRL
VLM
15
49
0
16 Apr 2017
Reinterpreting Importance-Weighted Autoencoders
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDL
FAtt
16
94
0
10 Apr 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
23
28
0
03 Apr 2017
Previous
123...171819
Next