ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.07027
  4. Cited By
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes

On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes

27 April 2015
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
ArXivPDFHTML

Papers citing "On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes"

50 / 116 papers shown
Title
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Bayesian Graph Neural Networks for Molecular Property Prediction
Bayesian Graph Neural Networks for Molecular Property Prediction
George Lamb
Brooks Paige
31
12
0
25 Nov 2020
Understanding Variational Inference in Function-Space
Understanding Variational Inference in Function-Space
David R. Burt
Sebastian W. Ober
Adrià Garriga-Alonso
Mark van der Wilk
BDL
14
41
0
18 Nov 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
11
12
0
19 Oct 2020
Recyclable Gaussian Processes
Recyclable Gaussian Processes
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
BDL
12
1
0
06 Oct 2020
A statistical theory of cold posteriors in deep neural networks
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCV
BDL
17
69
0
13 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDL
UQCV
17
0
0
12 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
29
69
0
01 Aug 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
33
63
0
20 Jul 2020
Probabilistic Active Meta-Learning
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
27
34
0
17 Jul 2020
Orthogonally Decoupled Variational Fourier Features
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
8
0
0
13 Jul 2020
Meta-Learning Stationary Stochastic Process Prediction with
  Convolutional Neural Processes
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Y. K. Foong
W. Bruinsma
Jonathan Gordon
Yann Dubois
James Requeima
Richard Turner
BDL
14
77
0
02 Jul 2020
Prediction with Approximated Gaussian Process Dynamical Models
Prediction with Approximated Gaussian Process Dynamical Models
Thomas Beckers
Sandra Hirche
AI4CE
14
18
0
25 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian
  Optimisation
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
11
2
0
25 Jun 2020
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Manuel Haussmann
S. Gerwinn
Andreas Look
Barbara Rakitsch
M. Kandemir
25
16
0
17 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to
  Inducing-Variable Approximations
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
16
0
0
06 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
24
24
0
15 Jan 2020
CATVI: Conditional and Adaptively Truncated Variational Inference for
  Hierarchical Bayesian Nonparametric Models
CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models
Jones Yirui Liu
Xinghao Qiao
Jessica Lam
TPM
14
3
0
13 Jan 2020
Continual Multi-task Gaussian Processes
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
6
13
0
31 Oct 2019
Data Smashing 2.0: Sequence Likelihood (SL) Divergence For Fast Time
  Series Comparison
Data Smashing 2.0: Sequence Likelihood (SL) Divergence For Fast Time Series Comparison
Yi Huang
I. Chattopadhyay
AI4TS
11
1
0
26 Sep 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart
  and inverse Wishart processes
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
32
15
0
22 Jun 2019
Bayesian Learning from Sequential Data using Gaussian Processes with
  Signature Covariances
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Tóth
Harald Oberhauser
11
9
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process
  Models
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
33
30
0
13 Jun 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
23
43
0
14 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational
  Harmonic Features
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
10
23
0
10 Apr 2019
Robust Deep Gaussian Processes
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
22
17
0
04 Apr 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
39
105
0
03 Apr 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
22
235
0
14 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
26
151
0
08 Mar 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
24
32
0
15 Feb 2019
Gaussian processes with linear operator inequality constraints
Gaussian processes with linear operator inequality constraints
C. Agrell
10
38
0
10 Jan 2019
Non-Factorised Variational Inference in Dynamical Systems
Non-Factorised Variational Inference in Dynamical Systems
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
19
6
0
14 Dec 2018
Closed-form Inference and Prediction in Gaussian Process State-Space
  Models
Closed-form Inference and Prediction in Gaussian Process State-Space Models
Alessandro Davide Ialongo
Mark van der Wilk
C. Rasmussen
24
8
0
10 Dec 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big
  Data
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
27
24
0
03 Nov 2018
Gaussian Process Conditional Density Estimation
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
Hugh Salimbeni
M. Deisenroth
J. Hensman
11
52
0
30 Oct 2018
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization
  Bounds
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
GP
11
33
0
29 Oct 2018
Decomposing feature-level variation with Covariate Gaussian Process
  Latent Variable Models
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens
Kieran R. Campbell
C. Yau
12
0
0
16 Oct 2018
Orthogonally Decoupled Variational Gaussian Processes
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
19
43
0
24 Sep 2018
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
35
35
0
02 Aug 2018
A Hierarchical Bayesian Linear Regression Model with Local Features for
  Stochastic Dynamics Approximation
A Hierarchical Bayesian Linear Regression Model with Local Features for Stochastic Dynamics Approximation
Behnoosh Parsa
K. Rajasekaran
Franziska Meier
A. Banerjee
17
5
0
11 Jul 2018
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
A. Panos
P. Dellaportas
Michalis K. Titsias
19
11
0
06 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
16
681
0
03 Jul 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Efficient Bayesian Inference for a Gaussian Process Density Model
Efficient Bayesian Inference for a Gaussian Process Density Model
Christian Donner
Manfred Opper
29
14
0
29 May 2018
Large-Scale Cox Process Inference using Variational Fourier Features
Large-Scale Cox Process Inference using Variational Fourier Features
S. T. John
J. Hensman
15
30
0
03 Apr 2018
Previous
123
Next