Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1504.07027
Cited By
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
27 April 2015
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes"
50 / 116 papers shown
Title
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Bayesian Graph Neural Networks for Molecular Property Prediction
George Lamb
Brooks Paige
31
12
0
25 Nov 2020
Understanding Variational Inference in Function-Space
David R. Burt
Sebastian W. Ober
Adrià Garriga-Alonso
Mark van der Wilk
BDL
14
41
0
18 Nov 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
11
12
0
19 Oct 2020
Recyclable Gaussian Processes
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
BDL
12
1
0
06 Oct 2020
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCV
BDL
17
69
0
13 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDL
UQCV
17
0
0
12 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
29
69
0
01 Aug 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
33
63
0
20 Jul 2020
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
27
34
0
17 Jul 2020
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
8
0
0
13 Jul 2020
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Y. K. Foong
W. Bruinsma
Jonathan Gordon
Yann Dubois
James Requeima
Richard Turner
BDL
14
77
0
02 Jul 2020
Prediction with Approximated Gaussian Process Dynamical Models
Thomas Beckers
Sandra Hirche
AI4CE
14
18
0
25 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
11
2
0
25 Jun 2020
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Manuel Haussmann
S. Gerwinn
Andreas Look
Barbara Rakitsch
M. Kandemir
25
16
0
17 Jun 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
16
0
0
06 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
24
24
0
15 Jan 2020
CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models
Jones Yirui Liu
Xinghao Qiao
Jessica Lam
TPM
14
3
0
13 Jan 2020
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
6
13
0
31 Oct 2019
Data Smashing 2.0: Sequence Likelihood (SL) Divergence For Fast Time Series Comparison
Yi Huang
I. Chattopadhyay
AI4TS
11
1
0
26 Sep 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
32
15
0
22 Jun 2019
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Tóth
Harald Oberhauser
11
9
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
33
30
0
13 Jun 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
23
43
0
14 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
10
23
0
10 Apr 2019
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
22
17
0
04 Apr 2019
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
39
105
0
03 Apr 2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
22
235
0
14 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
26
151
0
08 Mar 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
24
32
0
15 Feb 2019
Gaussian processes with linear operator inequality constraints
C. Agrell
10
38
0
10 Jan 2019
Non-Factorised Variational Inference in Dynamical Systems
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
19
6
0
14 Dec 2018
Closed-form Inference and Prediction in Gaussian Process State-Space Models
Alessandro Davide Ialongo
Mark van der Wilk
C. Rasmussen
24
8
0
10 Dec 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
27
24
0
03 Nov 2018
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
Hugh Salimbeni
M. Deisenroth
J. Hensman
11
52
0
30 Oct 2018
Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds
David Reeb
Andreas Doerr
S. Gerwinn
Barbara Rakitsch
GP
11
33
0
29 Oct 2018
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens
Kieran R. Campbell
C. Yau
12
0
0
16 Oct 2018
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
19
43
0
24 Sep 2018
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
35
35
0
02 Aug 2018
A Hierarchical Bayesian Linear Regression Model with Local Features for Stochastic Dynamics Approximation
Behnoosh Parsa
K. Rajasekaran
Franziska Meier
A. Banerjee
17
5
0
11 Jul 2018
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
A. Panos
P. Dellaportas
Michalis K. Titsias
19
11
0
06 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
16
681
0
03 Jul 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Efficient Bayesian Inference for a Gaussian Process Density Model
Christian Donner
Manfred Opper
29
14
0
29 May 2018
Large-Scale Cox Process Inference using Variational Fourier Features
S. T. John
J. Hensman
15
30
0
03 Apr 2018
Previous
1
2
3
Next