Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1504.07027
Cited By
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
27 April 2015
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes"
16 / 116 papers shown
Title
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
25
85
0
24 Mar 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
23
142
0
20 Mar 2018
The Gaussian Process Autoregressive Regression Model (GPAR)
James Requeima
Will Tebbutt
W. Bruinsma
Richard Turner
19
39
0
20 Feb 2018
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng
Byron Boots
BDL
16
75
0
28 Nov 2017
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
17
130
0
06 Sep 2017
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
13
60
0
16 Aug 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
10
51
0
08 Jun 2017
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
26
111
0
30 May 2017
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes
Zhenwen Dai
Mauricio A. Alvarez
Neil D. Lawrence
14
33
0
27 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
34
415
0
24 May 2017
Streaming Sparse Gaussian Process Approximations
T. Bui
Cuong V Nguyen
Richard Turner
16
101
0
19 May 2017
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
23
200
0
21 Nov 2016
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
16
657
0
27 Oct 2016
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
23
28
0
02 Sep 2016
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
Mark van der Wilk
C. Rasmussen
19
255
0
15 Jun 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
24
25
0
23 May 2016
Previous
1
2
3