ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.07027
  4. Cited By
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes

On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes

27 April 2015
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
ArXivPDFHTML

Papers citing "On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes"

16 / 116 papers shown
Title
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
25
85
0
24 Mar 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
23
142
0
20 Mar 2018
The Gaussian Process Autoregressive Regression Model (GPAR)
The Gaussian Process Autoregressive Regression Model (GPAR)
James Requeima
Will Tebbutt
W. Bruinsma
Richard Turner
19
39
0
20 Feb 2018
Variational Inference for Gaussian Process Models with Linear Complexity
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng
Byron Boots
BDL
16
75
0
28 Nov 2017
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
17
130
0
06 Sep 2017
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
13
60
0
16 Aug 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery
  using Gaussian Processes
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
10
51
0
08 Jun 2017
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
26
111
0
30 May 2017
Efficient Modeling of Latent Information in Supervised Learning using
  Gaussian Processes
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes
Zhenwen Dai
Mauricio A. Alvarez
Neil D. Lawrence
14
33
0
27 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
34
415
0
24 May 2017
Streaming Sparse Gaussian Process Approximations
Streaming Sparse Gaussian Process Approximations
T. Bui
Cuong V Nguyen
Richard Turner
16
101
0
19 May 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
23
200
0
21 Nov 2016
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
16
657
0
27 Oct 2016
Generic Inference in Latent Gaussian Process Models
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
23
28
0
02 Sep 2016
Understanding Probabilistic Sparse Gaussian Process Approximations
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
Mark van der Wilk
C. Rasmussen
19
255
0
15 Jun 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
24
25
0
23 May 2016
Previous
123