ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.07027
  4. Cited By
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes

On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes

27 April 2015
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
ArXivPDFHTML

Papers citing "On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes"

50 / 116 papers shown
Title
Functional Stochastic Gradient MCMC for Bayesian Neural Networks
Functional Stochastic Gradient MCMC for Bayesian Neural Networks
Mengjing Wu
Junyu Xuan
Jie Lu
BDL
27
0
0
25 Sep 2024
Review of Recent Advances in Gaussian Process Regression Methods
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
31
3
0
12 Sep 2024
Approximation-Aware Bayesian Optimization
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
31
2
0
06 Jun 2024
One-Shot Federated Learning with Bayesian Pseudocoresets
One-Shot Federated Learning with Bayesian Pseudocoresets
Tim d'Hondt
Mykola Pechenizkiy
Robert Peharz
FedML
37
0
0
04 Jun 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian
  Processes
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
18
1
0
15 Feb 2024
A General Theory for Kernel Packets: from state space model to compactly
  supported basis
A General Theory for Kernel Packets: from state space model to compactly supported basis
Liang Ding
Rui Tuo
13
1
0
06 Feb 2024
Continual Learning via Sequential Function-Space Variational Inference
Continual Learning via Sequential Function-Space Variational Inference
Tim G. J. Rudner
Freddie Bickford-Smith
Qixuan Feng
Yee Whye Teh
Y. Gal
30
39
0
28 Dec 2023
Tractable Function-Space Variational Inference in Bayesian Neural
  Networks
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
85
39
0
28 Dec 2023
Variational Gaussian Processes For Linear Inverse Problems
Variational Gaussian Processes For Linear Inverse Problems
Thibault Randrianarisoa
Botond Szabó
43
3
0
01 Nov 2023
Function Space Bayesian Pseudocoreset for Bayesian Neural Networks
Function Space Bayesian Pseudocoreset for Bayesian Neural Networks
Balhae Kim
Hyungi Lee
Juho Lee
BDL
29
2
0
27 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a
  variational perspective
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
32
2
0
16 Oct 2023
Pointwise uncertainty quantification for sparse variational Gaussian
  process regression with a Brownian motion prior
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
24
4
0
29 Sep 2023
Entropic Matching for Expectation Propagation of Markov Jump Processes
Entropic Matching for Expectation Propagation of Markov Jump Processes
Bastian Alt
Heinz Koeppl
Heinz Koeppl
34
1
0
27 Sep 2023
A Unifying Variational Framework for Gaussian Process Motion Planning
A Unifying Variational Framework for Gaussian Process Motion Planning
Lucas Cosier
Rares Iordan
Sicelukwanda Zwane
Giovanni Franzese
James T. Wilson
M. Deisenroth
Alexander Terenin
Yasemin Bekiroglu
3DV
24
4
0
02 Sep 2023
Integrated Variational Fourier Features for Fast Spatial Modelling with
  Gaussian Processes
Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
Talay M Cheema
C. Rasmussen
GP
33
2
0
27 Aug 2023
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
  Emulation
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation
S. Bouabid
Dino Sejdinovic
D. Watson‐Parris
16
5
0
14 Jul 2023
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
41
1
0
12 Jul 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient
  Descent
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
23
22
0
20 Jun 2023
Exploiting Unlabelled Photos for Stronger Fine-Grained SBIR
Exploiting Unlabelled Photos for Stronger Fine-Grained SBIR
Aneeshan Sain
A. Bhunia
Subhadeep Koley
Pinaki Nath Chowdhury
Soumitri Chattopadhyay
Tao Xiang
Yi-Zhe Song
28
18
0
24 Mar 2023
CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained
  or Not
CLIP for All Things Zero-Shot Sketch-Based Image Retrieval, Fine-Grained or Not
Aneeshan Sain
A. Bhunia
Pinaki Nath Chowdhury
Subhadeep Koley
Tao Xiang
Yi-Zhe Song
VLM
34
78
0
23 Mar 2023
On the Calibration and Uncertainty with Pólya-Gamma Augmentation for
  Dialog Retrieval Models
On the Calibration and Uncertainty with Pólya-Gamma Augmentation for Dialog Retrieval Models
Tong Ye
Shijing Si
Jianzong Wang
Ning Cheng
Zhitao Li
Jing Xiao
77
2
0
15 Mar 2023
Efficient Sensor Placement from Regression with Sparse Gaussian
  Processes in Continuous and Discrete Spaces
Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces
Kalvik Jakkala
Srinivas Akella
29
1
0
28 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
Diffusion Generative Models in Infinite Dimensions
Diffusion Generative Models in Infinite Dimensions
Gavin Kerrigan
Justin Ley
Padhraic Smyth
DiffM
50
27
0
01 Dec 2022
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
V. Lalchand
W. Bruinsma
David R. Burt
C. Rasmussen
GP
17
6
0
04 Nov 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Causal Modeling of Policy Interventions From Sequences of Treatments and
  Outcomes
Causal Modeling of Policy Interventions From Sequences of Treatments and Outcomes
Caglar Hizli
S. T. John
A. Juuti
Tuure Saarinen
Kirsi Pietiläinen
Pekka Marttinen
CML
14
1
0
09 Sep 2022
Variational Inference for Model-Free and Model-Based Reinforcement
  Learning
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
15
0
0
04 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
78
24
0
01 Sep 2022
Wide Bayesian neural networks have a simple weight posterior: theory and
  accelerated sampling
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Generalized Variational Inference in Function Spaces: Gaussian Measures
  meet Bayesian Deep Learning
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
Veit Wild
Robert Hu
Dino Sejdinovic
BDL
51
11
0
12 May 2022
AODisaggregation: toward global aerosol vertical profiles
AODisaggregation: toward global aerosol vertical profiles
S. Bouabid
D. Watson‐Parris
Sofija Stefanović
A. Nenes
Dino Sejdinovic
29
0
0
06 May 2022
Modelling Non-Smooth Signals with Complex Spectral Structure
Modelling Non-Smooth Signals with Complex Spectral Structure
W. Bruinsma
Martin Tegnér
Richard Turner
30
6
0
14 Mar 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
30
18
0
08 Feb 2022
Modular Gaussian Processes for Transfer Learning
Modular Gaussian Processes for Transfer Learning
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
13
4
0
26 Oct 2021
Variational Gaussian Processes: A Functional Analysis View
Variational Gaussian Processes: A Functional Analysis View
Veit Wild
George Wynne
GP
43
5
0
25 Oct 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
Variational Inference for Continuous-Time Switching Dynamical Systems
Variational Inference for Continuous-Time Switching Dynamical Systems
Lukas Kohs
Bastian Alt
Heinz Koeppl
40
8
0
29 Sep 2021
Contraction rates for sparse variational approximations in Gaussian
  process regression
Contraction rates for sparse variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
52
17
0
22 Sep 2021
Towards Fully Automated Segmentation of Rat Cardiac MRI by Leveraging
  Deep Learning Frameworks
Towards Fully Automated Segmentation of Rat Cardiac MRI by Leveraging Deep Learning Frameworks
Daniel Fernandez-Llaneza
Andrea Gondova
Harris Vince
A. Patra
M. Zurek
P. Konings
Patrik Kagelid
L. Hultin
27
4
0
09 Sep 2021
Estimation of Riemannian distances between covariance operators and
  Gaussian processes
Estimation of Riemannian distances between covariance operators and Gaussian processes
H. Q. Minh
36
1
0
26 Aug 2021
Active Learning in Gaussian Process State Space Model
Active Learning in Gaussian Process State Space Model
H. Yu
Dingling Yao
Christoph Zimmer
Marc Toussaint
D. Nguyen-Tuong
GP
22
4
0
30 Jul 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable
  Gaussian Processes
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
21
8
0
18 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDL
UQCV
26
28
0
14 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
40
27
0
06 Jun 2021
Connections and Equivalences between the Nyström Method and Sparse
  Variational Gaussian Processes
Connections and Equivalences between the Nyström Method and Sparse Variational Gaussian Processes
Veit Wild
Motonobu Kanagawa
Dino Sejdinovic
38
16
0
02 Jun 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
18
30
0
10 May 2021
Finite sample approximations of exact and entropic Wasserstein distances
  between covariance operators and Gaussian processes
Finite sample approximations of exact and entropic Wasserstein distances between covariance operators and Gaussian processes
H. Q. Minh
24
2
0
26 Apr 2021
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
  approach
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal approach
Karla Monterrubio-Gómez
S. Wade
24
2
0
04 Mar 2021
The Gaussian Neural Process
The Gaussian Neural Process
W. Bruinsma
James Requeima
Andrew Y. K. Foong
Jonathan Gordon
Richard Turner
BDL
25
28
0
10 Jan 2021
123
Next