Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1403.4699
Cited By
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
19 March 2014
Lin Xiao
Tong Zhang
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Proximal Stochastic Gradient Method with Progressive Variance Reduction"
50 / 108 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
36
0
0
28 Jan 2025
OledFL: Unleashing the Potential of Decentralized Federated Learning via Opposite Lookahead Enhancement
Qinglun Li
Miao Zhang
Mengzhu Wang
Quanjun Yin
Li Shen
OODD
FedML
26
0
0
09 Oct 2024
Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms
Bin Gu
Xiyuan Wei
Hualin Zhang
Yi Chang
Heng-Chiao Huang
FedML
23
0
0
03 Oct 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
38
0
0
19 Jul 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
79
12
0
08 Feb 2024
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
33
1
0
09 Nov 2023
GBM-based Bregman Proximal Algorithms for Constrained Learning
Zhenwei Lin
Qi Deng
26
1
0
21 Aug 2023
Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs with Short Burn-In Time
Xiang Ji
Gen Li
OffRL
32
7
0
24 May 2023
Stochastic Distributed Optimization under Average Second-order Similarity: Algorithms and Analysis
Dachao Lin
Yuze Han
Haishan Ye
Zhihua Zhang
22
11
0
15 Apr 2023
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Jinyan Su
Changhong Zhao
Di Wang
33
3
0
31 Mar 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
Le‐Yu Chen
Jing Xu
Luo Luo
31
15
0
16 Jan 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
32
6
0
09 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
34
2
0
09 Jan 2023
FSCNN: A Fast Sparse Convolution Neural Network Inference System
Bo Ji
Tianyi Chen
23
3
0
17 Dec 2022
Stochastic Steffensen method
Minda Zhao
Zehua Lai
Lek-Heng Lim
ODL
15
3
0
28 Nov 2022
A Stochastic Variance Reduced Gradient using Barzilai-Borwein Techniques as Second Order Information
Hardik Tankaria
N. Yamashita
11
1
0
23 Aug 2022
RECAPP: Crafting a More Efficient Catalyst for Convex Optimization
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
52
11
0
17 Jun 2022
Stochastic Gradient Methods with Preconditioned Updates
Abdurakhmon Sadiev
Aleksandr Beznosikov
Abdulla Jasem Almansoori
Dmitry Kamzolov
R. Tappenden
Martin Takáč
ODL
34
9
0
01 Jun 2022
Data-Consistent Local Superresolution for Medical Imaging
Junqi Tang
SupR
30
0
0
22 Feb 2022
MSTGD:A Memory Stochastic sTratified Gradient Descent Method with an Exponential Convergence Rate
Aixiang Chen
Chen
Jinting Zhang
Zanbo Zhang
Zhihong Li
38
0
0
21 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
31
15
0
05 Feb 2022
On the Complexity of a Practical Primal-Dual Coordinate Method
Ahmet Alacaoglu
V. Cevher
Stephen J. Wright
21
12
0
19 Jan 2022
Accelerated and instance-optimal policy evaluation with linear function approximation
Tianjiao Li
Guanghui Lan
A. Pananjady
OffRL
37
13
0
24 Dec 2021
Training Structured Neural Networks Through Manifold Identification and Variance Reduction
Zih-Syuan Huang
Ching-pei Lee
AAML
46
9
0
05 Dec 2021
Distributed stochastic proximal algorithm with random reshuffling for non-smooth finite-sum optimization
Xia Jiang
Xianlin Zeng
Jian Sun
Jie Chen
Lihua Xie
18
6
0
06 Nov 2021
An Asymptotic Analysis of Minibatch-Based Momentum Methods for Linear Regression Models
Yuan Gao
Xuening Zhu
Haobo Qi
Guodong Li
Riquan Zhang
Hansheng Wang
18
3
0
02 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
38
1
0
25 Oct 2021
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
32
14
0
22 Oct 2021
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
24
4
0
19 Oct 2021
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
19
1
0
30 Sep 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
43
14
0
21 Mar 2021
Distributed Second Order Methods with Fast Rates and Compressed Communication
Rustem Islamov
Xun Qian
Peter Richtárik
32
51
0
14 Feb 2021
Neural Network Compression Via Sparse Optimization
Tianyi Chen
Bo Ji
Yixin Shi
Tianyu Ding
Biyi Fang
Sheng Yi
Xiao Tu
36
15
0
10 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
Privacy-Preserving Asynchronous Federated Learning Algorithms for Multi-Party Vertically Collaborative Learning
Bin Gu
An Xu
Zhouyuan Huo
Cheng Deng
Heng-Chiao Huang
FedML
38
27
0
14 Aug 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi Ma
53
23
0
18 Jun 2020
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
23
83
0
22 Feb 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
Variance Reduced Stochastic Proximal Algorithm for AUC Maximization
Soham Dan
Dushyant Sahoo
12
3
0
08 Nov 2019
A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression
Jiajin Li
Sen Huang
Anthony Man-Cho So
OOD
24
12
0
28 Oct 2019
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
25
30
0
22 Oct 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
28
83
0
18 Sep 2019
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
27
11
0
15 Sep 2019
Private Stochastic Convex Optimization with Optimal Rates
Raef Bassily
Vitaly Feldman
Kunal Talwar
Abhradeep Thakurta
21
236
0
27 Aug 2019
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints
Qihang Lin
Selvaprabu Nadarajah
Negar Soheili
Tianbao Yang
27
13
0
07 Aug 2019
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
6
3
0
22 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
35
185
0
05 Jun 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
Junzhe Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
442
0
28 May 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
F. Fleuret
Simon Lacoste-Julien
25
134
0
18 Apr 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
1
2
3
Next